IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v128y2010i2p510-517.html
   My bibliography  Save this article

Optimal carrier selection based on network reliability criterion for stochastic logistics networks

Author

Listed:
  • Lin, Yi-Kuei
  • Yeh, Cheng-Ta

Abstract

In a global economic environment, many enterprises expend their overseas markets and implement outsourcing of logistics activities to external carriers. Many enterprises pay close attention to successful delivery of their freight. Hence, how to determine the optimal carrier selection is a very critical issue for global enterprises. Generally, there are several carriers to serve on each route connecting two cities (or transfer stations) in the logistics network. Each carrier owns multiple available capacities with a probability distribution because the carrier's capacity may be partially reserved for other orders. A carrier selection means selecting exact one carrier on each route, and the logistics network according to the carrier selection is thus a stochastic logistic network. The network reliability is a performance index of freight delivery for supply chain management and is defined as the probability that d units of commodity are successfully transmitted from a supplier to a customer. This study focuses on the optimal carrier selection problem based on network reliability criterion. A GA-based algorithm that combines the minimal paths and the recursive sum of disjoint products is developed to determine the optimal carrier selection with the maximal network reliability. A practical logistics example of the LCD monitors delivery from Asia to Europe is presented to illustrate the solution procedure.

Suggested Citation

  • Lin, Yi-Kuei & Yeh, Cheng-Ta, 2010. "Optimal carrier selection based on network reliability criterion for stochastic logistics networks," International Journal of Production Economics, Elsevier, vol. 128(2), pages 510-517, December.
  • Handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:510-517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00226-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yi-Kuei, 2007. "On a multicommodity stochastic-flow network with unreliable nodes subject to budget constraint," European Journal of Operational Research, Elsevier, vol. 176(1), pages 347-360, January.
    2. Liao, Zhiying & Rittscher, Jens, 2007. "Integration of supplier selection, procurement lot sizing and carrier selection under dynamic demand conditions," International Journal of Production Economics, Elsevier, vol. 107(2), pages 502-510, June.
    3. Lin, Yi-Kuei, 2007. "Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity," International Journal of Production Economics, Elsevier, vol. 107(2), pages 572-580, June.
    4. Joseph C. Hudson & Kailash C. Kapur, 1985. "Reliability Bounds for Multistate Systems with Multistate Components," Operations Research, INFORMS, vol. 33(1), pages 153-160, February.
    5. Yeh, Wei-Chang, 2004. "Multistate network reliability evaluation under the maintenance cost constraint," International Journal of Production Economics, Elsevier, vol. 88(1), pages 73-83, March.
    6. Bolduc, Marie-Claude & Renaud, Jacques & Boctor, Fayez, 2007. "A heuristic for the routing and carrier selection problem," European Journal of Operational Research, Elsevier, vol. 183(2), pages 926-932, December.
    7. Lin, Yi-Kuei, 2010. "A stochastic model to study the system capacity for supply chains in terms of minimal cuts," International Journal of Production Economics, Elsevier, vol. 124(1), pages 181-187, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    2. Feki, Yassin & Hajji, Adnène & Rekik, Monia, 2016. "A hedging policy for carriers’ selection under availability and demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 149-165.
    3. Yi-Feng Niu & Can He & De-Qiang Fu, 2022. "Reliability assessment of a multi-state distribution network under cost and spoilage considerations," Annals of Operations Research, Springer, vol. 309(1), pages 189-208, February.
    4. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao & Chih-Ching Yeh, 2017. "System reliability for a multistate intermodal logistics network with time windows," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1957-1969, April.
    5. Yi-Kuei Lin & Cheng-Ta Yeh & Cheng-Fu Huang, 2016. "A simple algorithm to evaluate supply-chain reliability for brittle commodity logistics under production and delivery constraints," Annals of Operations Research, Springer, vol. 244(1), pages 67-83, September.
    6. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    7. Cheng-Ta Yeh & Yi-Kuei Lin & Cheng-Fu Huang, 2016. "Vehicle glass distribution reliability measurement under transportation cost constraint," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 243-263.
    8. Cheng-Fu Huang, 2019. "Evaluation of system reliability for a stochastic delivery-flow distribution network with inventory," Annals of Operations Research, Springer, vol. 277(1), pages 33-45, June.
    9. Niu, Yi-Feng & Lam, William H.K. & Gao, Ziyou, 2014. "An efficient algorithm for evaluating logistics network reliability subject to distribution cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 175-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei, 2010. "A stochastic model to study the system capacity for supply chains in terms of minimal cuts," International Journal of Production Economics, Elsevier, vol. 124(1), pages 181-187, March.
    2. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2012. "Determining the optimal double-component assignment for a stochastic computer network," Omega, Elsevier, vol. 40(1), pages 120-130, January.
    3. Lin, Yi-Kuei, 2010. "System reliability of a stochastic-flow network through two minimal paths under time threshold," International Journal of Production Economics, Elsevier, vol. 124(2), pages 382-387, April.
    4. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    5. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    6. Lin, Yi-Kuei, 2007. "Reliability of a computer network in case capacity weight varying with arcs, nodes and types of commodity," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 646-652.
    7. Yi-Kuei Lin & Cheng-Ta Yeh & Cheng-Fu Huang, 2016. "A simple algorithm to evaluate supply-chain reliability for brittle commodity logistics under production and delivery constraints," Annals of Operations Research, Springer, vol. 244(1), pages 67-83, September.
    8. Lin, Yi-Kuei, 2010. "Reliability evaluation of a revised stochastic flow network with uncertain minimum time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1253-1258.
    9. Cheng-Ta Yeh & Yi-Kuei Lin & Cheng-Fu Huang, 2016. "Vehicle glass distribution reliability measurement under transportation cost constraint," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(2), pages 243-263.
    10. Feki, Yassin & Hajji, Adnène & Rekik, Monia, 2016. "A hedging policy for carriers’ selection under availability and demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 149-165.
    11. Yi‐Kuei Lin & Ping‐Chen Chang, 2012. "Evaluation of system reliability for a cloud computing system with imperfect nodes," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 83-94, March.
    12. Yi-Kuei Lin & Ping-Chen Chang, 2013. "Performance indicator evaluation for a cloud computing system from QoS viewpoint," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1605-1616, April.
    13. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    14. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    15. Andreas Stenger & Daniele Vigo & Steffen Enz & Michael Schwind, 2013. "An Adaptive Variable Neighborhood Search Algorithm for a Vehicle Routing Problem Arising in Small Package Shipping," Transportation Science, INFORMS, vol. 47(1), pages 64-80, February.
    16. van der Rhee, Bo & Verma, Rohit & Plaschka, Gerhard, 2009. "Understanding trade-offs in the supplier selection process: The role of flexibility, delivery, and value-added services/support," International Journal of Production Economics, Elsevier, vol. 120(1), pages 30-41, July.
    17. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    18. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    19. M. A. Raayatpanah & P. M. Pardalos, 2018. "Reliability evaluation of a multicast over coded packet networks," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 921-940, April.
    20. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:128:y:2010:i:2:p:510-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.