IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v621y2023ics0378437123002789.html
   My bibliography  Save this article

Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks

Author

Listed:
  • Xu, Yuan-Hao
  • Wang, Hao-Jie
  • Lu, Zhong-Wen
  • Hu, Mao-Bin

Abstract

Despite intensive studies on epidemic spreading in multiplex networks, the physical contact network is normally represented by individual contacts without considering human mobility. In this paper, a coupled epidemic–awareness–mobility model is constructed on multiplex networks, where the upper layer describes awareness dissemination via information links, while the lower layer describes epidemic spreading with recurrent mobility based on meta-population. In the information dissemination process, the role of taciturn individuals is considered. By microscopic Markov chain approach, the threshold of epidemic is derived analytically. Through extensive simulations, it is shown that the dissemination of information can significantly affect the epidemic threshold and the final recovery density. Moreover, because the hub nodes will be more likely in taciturn state, the structure of information layer can affect the stationary fraction of recovered individuals and the epidemic threshold. Finally, a hub-patch favored migration pattern will increase the final scale of epidemic spreading. Increasing the information transmission rate and decreasing the mobility rate are the optimal strategies to suppress epidemic spreading. The results can sharpen our understanding of the role of awareness dissemination and human mobility in epidemic containment.

Suggested Citation

  • Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
  • Handle: RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123002789
    DOI: 10.1016/j.physa.2023.128723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123002789
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128723?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    2. Huo, Liang’an & Gu, Jiafeng, 2023. "The influence of individual emotions on the coupled model of unconfirmed information propagation and epidemic spreading in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Li, Hui-Jia & Xu, Wenzhe & Song, Shenpeng & Wang, Wen-Xuan & Perc, Matjaž, 2021. "The dynamics of epidemic spreading on signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Wang, Zhishuang & Guo, Quantong & Sun, Shiwen & Xia, Chengyi, 2019. "The impact of awareness diffusion on SIR-like epidemics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 134-147.
    5. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Yang, Han-Xin & Tang, Ming & Wang, Zhen, 2018. "Suppressing epidemic spreading by risk-averse migration in dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 347-352.
    8. Bernardes, Américo T. & Ribeiro, Leonardo Costa, 2021. "Information, opinion and pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Dun Han & Qi Shao & Dandan Li, 2020. "Exploring the Epidemic Spreading in a Multilayer Metapopulation Network by considering Individuals’ Periodic Travelling," Complexity, Hindawi, vol. 2020, pages 1-9, April.
    10. Sun, Qingyi & Wang, Zhishuang & Zhao, Dawei & Xia, Chengyi & Perc, Matjaž, 2022. "Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Wang, Shuangyan & Cheng, Wuyi, 2019. "Novel method for spreading information with fewer resources in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 15-29.
    12. Wang, Jianwei & Xu, Wenshu & Chen, Wei & Yu, Fengyuan & He, Jialu, 2021. "Information sharing can suppress the spread of epidemics: Voluntary vaccination game on two-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    13. Petra Mlcochova & Steven A. Kemp & Mahesh Shanker Dhar & Guido Papa & Bo Meng & Isabella A. T. M. Ferreira & Rawlings Datir & Dami A. Collier & Anna Albecka & Sujeet Singh & Rajesh Pandey & Jonathan B, 2021. "SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion," Nature, Nature, vol. 599(7883), pages 114-119, November.
    14. Kumar, Anuj & Srivastava, Prashant K. & Dong, Yueping & Takeuchi, Yasuhiro, 2020. "Optimal control of infectious disease: Information-induced vaccination and limited treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Colin J. Worby & Hsiao-Han Chang, 2020. "Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    16. Ma, Weicai & Zhang, Peng & Zhao, Xin & Xue, Leyang, 2022. "The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    17. Yang, Han-Xin & Wang, Zhen, 2016. "Suppressing traffic-driven epidemic spreading by adaptive routing strategy," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 147-150.
    18. Zhu, Cheng-Cheng & Zhu, Jiang, 2021. "Dynamic analysis of a delayed COVID-19 epidemic with home quarantine in temporal-spatial heterogeneous via global exponential attractor method," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Xuemei & Zhang, Man & Ma, Yinghong & Tan, Jipeng & Liu, Zhiyuan, 2023. "Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Huo, Liang’an & Yu, Yue, 2023. "The impact of the self-recognition ability and physical quality on coupled negative information-behavior-epidemic dynamics in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Chen, Xiao-Long & Wang, Rui-Jie & Yang, Chun & Cai, Shi-Min, 2019. "Hybrid resource allocation and its impact on the dynamics of disease spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 156-165.
    4. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    5. Huo, Liang’an & Gu, Jiafeng, 2023. "The influence of individual emotions on the coupled model of unconfirmed information propagation and epidemic spreading in multilayer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Biswas, Soumyajyoti & Mandal, Amit Kr, 2021. "Parallel Minority Game and it’s application in movement optimization during an epidemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Nattavudh Powdthavee & Yohanes E Riyanto & Erwin C L Wong & Jonathan X W Yeo & Qi Yu Chan, 2021. "When face masks signal social identity: Explaining the deep face-mask divide during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.
    8. Xin Ai & Xinyu Liu & Yuting Ding & Han Li, 2022. "Dynamic Analysis of a COVID-19 Vaccination Model with a Positive Feedback Mechanism and Time-Delay," Mathematics, MDPI, vol. 10(9), pages 1-24, May.
    9. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    11. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    12. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    13. Zhu, Xuzhen & Wang, Ruijie & Wang, Zexun & Chen, Xiaolong & Wang, Wei & Cai, Shimin, 2019. "Double-edged sword effect of edge overlap on asymmetrically interacting spreading dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 617-624.
    14. Nikhil Agarwal & Andrew Komo & Chetan A. Patel & Parag A. Pathak & M. Utku Ünver, 2021. "The Trade-off Between Prioritization and Vaccination Speed Depends on Mitigation Measures," NBER Working Papers 28519, National Bureau of Economic Research, Inc.
    15. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    16. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    17. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    18. An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    19. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    20. Hubert, Philipp & Abdel Hadi, Sascha & Mojzisch, Andreas & Häusser, Jan Alexander, 2022. "The effects of organizational climate on adherence to guidelines for COVID-19 prevention," Social Science & Medicine, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:621:y:2023:i:c:s0378437123002789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.