IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v615y2023ics0378437123001668.html
   My bibliography  Save this article

A comparative thermodynamic and thermoeconomic analysis between two ecological regimes for the Novikov energy converter

Author

Listed:
  • Ares de Parga-Regalado, A.M.
  • Ramírez-Moreno, M.A.
  • Angulo-Brown, F.

Abstract

In the context of finite-time thermodynamics, a comparative thermodynamic analysis between the ecological regime and the ecological efficient power regime, recently introduced, is done. The study examines the Novikov energy converter model with a linear heat transfer law when performing under these regimes. To make the proper comparison, through the so-called compromise functions, a modification to the ecological efficient power energetic function is proposed. It is found that the thermal efficiencies are very similar to the appropriate ones of the modified ecological function. However, notable differences are obtained for the optimal efficiencies from a thermoeconomic optimization analysis.

Suggested Citation

  • Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A. & Angulo-Brown, F., 2023. "A comparative thermodynamic and thermoeconomic analysis between two ecological regimes for the Novikov energy converter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
  • Handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001668
    DOI: 10.1016/j.physa.2023.128611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123001668
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    2. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Ramírez-Moreno, M.A. & Angulo-Brown, F., 2017. "Ecological optimization of a family of n-Müser engines for an arbitrary value of the solar concentration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 250-255.
    4. Ocampo-García, A. & Barranco-Jiménez, M.A. & Angulo-Brown, F., 2017. "Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 149-161.
    5. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A., 2022. "On the analysis of an ecological regime for energy converters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Thermo-economics for endoreversible heat-engines," Applied Energy, Elsevier, vol. 81(4), pages 388-396, August.
    7. Marco A. Barranco-Jiménez & Israel Ramos-Gayosso & Marco A. Rosales & Fernando Angulo-Brown, 2009. "A Proposal of Ecologic Taxes Based on Thermo-Economic Performance of Heat Engine Models," Energies, MDPI, vol. 2(4), pages 1-15, November.
    8. Chen, Lingen & Liu, Xiaowei & Ge, Yanlin & Wu, Feng & Feng, Huijun & Xia, Shaojun, 2020. "Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Ramírez-Moreno, M.A. & González-Hernández, S. & Angulo-Brown, F., 2016. "The role of the Stefan–Boltzmann law in the thermodynamic optimization of an n-Müser engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 914-921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    2. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ares de Parga-Regalado, A.M. & Valencia-Ortega, G. & Barranco-Jiménez, M.A., 2023. "Thermo-economic optimization of irreversible Novikov power plant models including a proposal of dissipation cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    2. Ares de Parga-Regalado, A.M. & Ramírez-Moreno, M.A., 2022. "On the analysis of an ecological regime for energy converters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Valencia-Ortega, G. & Levario-Medina, S. & Barranco-Jiménez, M.A., 2021. "Local and global stability analysis of a Curzon–Ahlborn model applied to power plants working at maximum k-efficient power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    5. Lingen Chen & Chenqi Tang & Huijun Feng & Yanlin Ge, 2020. "Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Gonzalez-Hernandez, S. & Ramirez-Moreno, M.A. & Ares de Parga, G., 2023. "Unification criteria of optimization and energetic analysis of a thermoelectric-generator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Fatih Selimefendigil & Hakan F. Oztop & Mikhail A. Sheremet, 2021. "Thermoelectric Generation with Impinging Nano-Jets," Energies, MDPI, vol. 14(2), pages 1-24, January.
    10. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    11. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    12. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    13. Liu, Haowen & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli & Shen, Chao, 2023. "Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal—mechanic characteristics in a thermoelectric cooler," Energy, Elsevier, vol. 267(C).
    14. Beltrán-Pitarch, Braulio & Maassen, Jesse & García-Cañadas, Jorge, 2021. "Comprehensive impedance spectroscopy equivalent circuit of a thermoelectric device which includes the internal thermal contact resistances," Applied Energy, Elsevier, vol. 299(C).
    15. Zhaochun Shi & Guohua Wang & Chunli Liu & Qiang Lv & Baoli Gong & Yingchao Zhang & Yuying Yan, 2023. "Optimizing the Transient Performance of Thermoelectric Generator with PCM by Taguchi Method," Energies, MDPI, vol. 16(2), pages 1-16, January.
    16. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    17. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    18. Lingen Chen & Kang Ma & Huijun Feng & Yanlin Ge, 2020. "Optimal Configuration of a Gas Expansion Process in a Piston-Type Cylinder with Generalized Convective Heat Transfer Law," Energies, MDPI, vol. 13(12), pages 1-20, June.
    19. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    20. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:615:y:2023:i:c:s0378437123001668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.