IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v592y2022ics0378437121009547.html
   My bibliography  Save this article

Modeling conditional dependencies for bus travel time estimation

Author

Listed:
  • Büchel, Beda
  • Corman, Francesco

Abstract

In the age of Intelligent Transportation Systems it is essential to provide operators and passengers with reliable information. The estimation of probability distributions of public transport travel times is crucial as it directly informs about the reliability of travel times. Thus, the probability distributions of travel times are useful for timetabling and route choice. This work estimates probability distributions of segment (multi-section) bus running and dwell times. We propose a hidden Markov chain framework, which captures the dependency structure of consecutive section running times and includes conditional correlations. The dependency structure of consecutive segment dwell times is modeled as a combination of correlation and operation-specific dependencies. Such a model allows describing the relationship between section-level running/station-level dwell time distributions and segment level distributions. The model is interpretable, as the dependency structure is explicitly modeled. Finally, the proposed model is evaluated on the operation of the trolley bus network of Zurich, Switzerland, and shows an average increase in fitting quality (measured by Wasserstein distance) of 26% for running times and 29% for dwell times compared to an approach not including conditional dependencies, i.e., convolution of link running and dwell times.

Suggested Citation

  • Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
  • Handle: RePEc:eee:phsmap:v:592:y:2022:i:c:s0378437121009547
    DOI: 10.1016/j.physa.2021.126764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121009547
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Jinjun & Yang, Yifan & Qi, Yong, 2018. "A hybrid algorithm for Urban transit schedule optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 745-755.
    2. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    3. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    4. Shanmukhappa, Tanuja & Ho, Ivan Wang-Hei & Tse, Chi Kong, 2018. "Spatial analysis of bus transport networks using network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 295-314.
    5. Oded Cats & Zafeira Gkioulou, 2017. "Modeling the impacts of public transport reliability and travel information on passengers’ waiting-time uncertainty," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 247-270, September.
    6. Yeon, Jiyoun & Elefteriadou, Lily & Lawphongpanich, Siriphong, 2008. "Travel time estimation on a freeway using Discrete Time Markov Chains," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 325-338, May.
    7. F McLeod, 2007. "Estimating bus passenger waiting times from incomplete bus arrivals data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1518-1525, November.
    8. Chen, Yong-Zhou & Li, Nan & He, Da-Ren, 2007. "A study on some urban bus transport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 747-754.
    9. William C. Jordan & Mark A. Turnquist, 1979. "Zone Scheduling of Bus Routes to Improve Service Reliability," Transportation Science, INFORMS, vol. 13(3), pages 242-268, August.
    10. Tang, Jinjun & Hu, Jin & Hao, Wei & Chen, Xinqiang & Qi, Yong, 2020. "Markov Chains based route travel time estimation considering link spatio-temporal correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Robert B. Noland & John W. Polak, 2002. "Travel time variability: A review of theoretical and empirical issues," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 39-54, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    2. Guo, Bao & Li, Minglun & Zhou, Mengnan & Zhang, Fan & Wang, Pu, 2023. "A new anomalous travel demand prediction method combining Markov model and complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    2. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    3. Shao, Feng & Shao, Hu & Wang, Dongle & Lam, William H.K. & Cao, Shuhan, 2023. "A generative model for vehicular travel time distribution prediction considering spatial and temporal correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    4. Tang, Jinjun & Hu, Jin & Hao, Wei & Chen, Xinqiang & Qi, Yong, 2020. "Markov Chains based route travel time estimation considering link spatio-temporal correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    7. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    8. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    9. Luo, Xiaoqian & Wang, Dianhai & Ma, Dongfang & Jin, Sheng, 2019. "Grouped travel time estimation in signalized arterials using point-to-point detectors," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 130-151.
    10. Du, Bo & Wang, David Z.W., 2014. "Continuum modeling of park-and-ride services considering travel time reliability and heterogeneous commuters – A linear complementarity system approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 58-81.
    11. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    12. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    13. Nantes, Alfredo & Ngoduy, Dong & Miska, Marc & Chung, Edward, 2015. "Probabilistic travel time progression and its application to automatic vehicle identification data," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 131-145.
    14. Mojtaba Rajabi-Bahaabadi & Afshin Shariat-Mohaymany & Mohsen Babaei & Daniele Vigo, 2021. "Reliable vehicle routing problem in stochastic networks with correlated travel times," Operational Research, Springer, vol. 21(1), pages 299-330, March.
    15. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    16. Huan Ngo & Sabyasachee Mishra, 2023. "Traffic Graph Convolutional Network for Dynamic Urban Travel Speed Estimation," Networks and Spatial Economics, Springer, vol. 23(1), pages 179-222, March.
    17. Manjalavil, Manju Manohar & Ramadurai, Gitakrishnan, 2020. "Topological properties of bus transit networks considering demand and service utilization weight measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    18. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    19. Fangfang Zheng & Henk van Zuylen & Xiaobo Liu, 2017. "A Methodological Framework of Travel Time Distribution Estimation for Urban Signalized Arterial Roads," Transportation Science, INFORMS, vol. 51(3), pages 893-917, August.
    20. Hemant Gehlot & Arif M. Sadri & Satish V. Ukkusuri, 2019. "Joint modeling of evacuation departure and travel times in hurricanes," Transportation, Springer, vol. 46(6), pages 2419-2440, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:592:y:2022:i:c:s0378437121009547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.