IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v582y2021ics0378437121005008.html
   My bibliography  Save this article

Self-organized Speculation Game for the spontaneous emergence of financial stylized facts

Author

Listed:
  • Katahira, Kei
  • Chen, Yu
  • Akiyama, Eizo

Abstract

We sophisticate the Speculation Game to relax the need for rigorous tuning of a part of parameters for the emergence of characteristic statistics of price returns. Named as Self-organized Speculation Game (SOSG), thanks to the concept of the Bak–Tang–Wiesenfeld (BTW) sandpile model, the model can spontaneously adjust the number of market participants during the process of reaching the quasi-critical state. While the original Speculation Game’s high reproducibility of financial stylized facts is maintained, the behavioral characteristics of this modified model, such as the dynamics of system size and the observations of power-law phenomena, strongly resemble those of the BTW model. The market size is evolutionally settled with fluctuations within a certain range, similar to the total sand grains behave in the sandpile model. SOSG infers the possibility that, in the real financial markets, it could be the self-organized quasi-criticality which works behind the spontaneous emergence of universal financial stylized facts.

Suggested Citation

  • Katahira, Kei & Chen, Yu & Akiyama, Eizo, 2021. "Self-organized Speculation Game for the spontaneous emergence of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
  • Handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005008
    DOI: 10.1016/j.physa.2021.126227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121005008
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    2. Gopikrishnan, P & Plerou, V & Liu, Y & Amaral, L.A.N & Gabaix, X & Stanley, H.E, 2000. "Scaling and correlation in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 362-373.
    3. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    4. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    5. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    6. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
    7. J-P. Bouchaud & I. Giardina & M. Mzard, 2001. "On a universal mechanism for long-range volatility correlations," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 212-216.
    8. Tina Hviid Rydberg, 2000. "Realistic Statistical Modelling of Financial Data," International Statistical Review, International Statistical Institute, vol. 68(3), pages 233-258, December.
    9. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    10. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    11. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    12. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    13. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    14. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    15. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    16. V. Alfi & M. Cristelli & L. Pietronero & A. Zaccaria, 2009. "Minimal agent based model for financial markets I," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 67(3), pages 385-397, February.
    17. Challet, D. & Zhang, Y.-C., 1997. "Emergence of cooperation and organization in an evolutionary game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 407-418.
    18. A. E. Biondo & A. Pluchino & A. Rapisarda, 2015. "Modelling Financial Markets by Self-Organized Criticality," Papers 1507.04298, arXiv.org, revised Oct 2015.
    19. Raul Donangelo & Mogens H. Jensen & Ingve Simonsen & Kim Sneppen, 2006. "Synchronization Model for Stock Market Asymmetry," Papers physics/0604137, arXiv.org, revised Aug 2006.
    20. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda, 2014. "Micro and Macro Benefits of Random Investments in Financial Markets," Papers 1405.5805, arXiv.org.
    21. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    22. Kei Katahira & Yu Chen, 2020. "An Extended Speculation Game for the Recovery of Hurst Exponent of Financial Time Series," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 319-325, July.
    23. Manuca, Radu & Li, Yi & Riolo, Rick & Savit, Robert, 2000. "The structure of adaptive competition in minority games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 559-608.
    24. Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Dirk Helbing, 2013. "Reducing Financial Avalanches By Random Investments," Papers 1309.3639, arXiv.org, revised Nov 2013.
    25. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    26. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    2. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    3. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    4. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    5. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    7. Kei Katahira & Yu Chen, 2019. "An extended Speculation Game for the recovery of Hurst exponent of financial time series," Papers 1909.02899, arXiv.org.
    8. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    9. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    10. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    11. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    12. Yang, G. & Chen, Y. & Huang, J.P., 2016. "The highly intelligent virtual agents for modeling financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 98-108.
    13. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    14. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    15. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    16. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    17. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    18. Wen-Juan Xu & Chen-Yang Zhong & Fei Ren & Tian Qiu & Rong-Da Chen & Yun-Xin He & Li-Xin Zhong, 2020. "Evolutionary dynamics in financial markets with heterogeneities in strategies and risk tolerance," Papers 2010.08962, arXiv.org.
    19. Alessio Emanuele Biondo, 2018. "Order book microstructure and policies for financial stability," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 35(1), pages 196-218, March.
    20. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.