IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp702-713.html
   My bibliography  Save this article

A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process

Author

Listed:
  • Jiang, Jianhua
  • Chen, Yujun
  • Meng, Xianqiu
  • Wang, Limin
  • Li, Keqin

Abstract

Density Peaks Clustering (DPC) algorithm is a kind of density-based clustering approach, which can quickly search and find density peaks. However, DPC has deficiency in assignment process, which is likely to trigger domino effect. Especially, it cannot process some non-spherical data sets such as Spiral. The research results indicate that assignment process appears to be the most significant step in deciding the success of the clustering performance. Therefore, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which aims to overcome the weakness of DPC. The proposed DPC-KNN integrates the idea of k nearest neighbors into the distance computation and assignment process, which is more reasonable. It can be seen from experimental results that the DPC-KNN algorithm is more feasible and effective, compared with K-means, DBSCAN and DPC.

Suggested Citation

  • Jiang, Jianhua & Chen, Yujun & Meng, Xianqiu & Wang, Limin & Li, Keqin, 2019. "A novel density peaks clustering algorithm based on k nearest neighbors for improving assignment process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 702-713.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:702-713
    DOI: 10.1016/j.physa.2019.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119302316
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Jianhua & Chen, Yujun & Hao, Dehao & Li, Keqin, 2019. "DPC-LG: Density peaks clustering based on logistic distribution and gravitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 25-35.
    2. Jiang, Jianhua & Hao, Dehao & Chen, Yujun & Parmar, Milan & Li, Keqin, 2018. "GDPC: Gravitation-based Density Peaks Clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 345-355.
    3. Shi, Yongbin & Li, Le & Wang, Yougui & Chen, Jiawei & Stanley, H. Eugene, 2019. "A study of Chinese regional hierarchical structure based on surnames," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 169-176.
    4. Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lingyuan & Yang, Xin & Chang, Ximing & Wu, Jianjun & Sun, Huijun, 2023. "An improved density peaks clustering algorithm based on k nearest neighbors and turning point for evaluating the severity of railway accidents," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
    3. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    4. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    5. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    6. Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
    7. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    8. Lean Yu & Yueming Ma, 2021. "A Data-Trait-Driven Rolling Decomposition-Ensemble Model for Gasoline Consumption Forecasting," Energies, MDPI, vol. 14(15), pages 1-26, July.
    9. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
    10. Na Fu & Liyan Geng & Junhai Ma & Xue Ding, 2023. "Price, Complexity, and Mathematical Model," Mathematics, MDPI, vol. 11(13), pages 1-30, June.
    11. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    12. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    13. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    14. Zhou, Yang & Xie, Chi & Wang, Gang-Jin & Zhu, You & Uddin, Gazi Salah, 2023. "Analysing and forecasting co-movement between innovative and traditional financial assets based on complex network and machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. An, Sufang & An, Feng & Gao, Xiangyun & Wang, Anjian, 2023. "Early warning of critical transitions in crude oil price," Energy, Elsevier, vol. 280(C).
    16. Wang, Minggang & Xu, Hua & Tian, Lixin & Eugene Stanley, H., 2018. "Degree distributions and motif profiles of limited penetrable horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 620-634.
    17. Jiang, Jianhua & Chen, Yujun & Hao, Dehao & Li, Keqin, 2019. "DPC-LG: Density peaks clustering based on logistic distribution and gravitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 25-35.
    18. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    19. Wang, Fan & Tian, Lixin & Du, Ruijin & Dong, Gaogao, 2021. "Universal law in the crude oil market based on visibility graph algorithm and network structure," Resources Policy, Elsevier, vol. 70(C).
    20. Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:702-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.