IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v522y2019icp195-204.html
   My bibliography  Save this article

Energy-supported cascading failure model on interdependent networks considering control nodes

Author

Listed:
  • Tian, Meng
  • Dong, Zhengcheng
  • Cui, Mingjian
  • Wang, Jianhui
  • Wang, Xianpei
  • Zhao, Le

Abstract

Cascading failures are emergent phenomena on interdependent networks and plenty of models have been proposed to explore the features of cascading failures. However, few of them focus on energy-supported dependence relations between interdependent networks including control nodes. In this paper, a load-based energy-supported cascading failure model is proposed on interdependent networks, where the energy control factor λ and control nodes are considered. According to the numerical simulations, it is found that as the energy control factor λ increases, both interdependent Erdős–Rényi (ER) networks and scale-free (SF) networks become more vulnerable. Meanwhile, with the increase of energy control factor λ, interdependent SF networks become more robust than ER networks against random failures. In addition, increasing the power exponent γ can improve the robustness of interdependent SF networks. Finally, although coupling preferences and control node setting strategies have few impacts on cascading failures on interdependent ER networks, the assortative coupling preference (AC) and betweenness control node setting strategy (BS) can improve the robustness of interdependent SF networks.

Suggested Citation

  • Tian, Meng & Dong, Zhengcheng & Cui, Mingjian & Wang, Jianhui & Wang, Xianpei & Zhao, Le, 2019. "Energy-supported cascading failure model on interdependent networks considering control nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 195-204.
  • Handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:195-204
    DOI: 10.1016/j.physa.2019.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301189
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianwei & Jiang, Chen & Qian, Jianfei, 2014. "Robustness of interdependent networks with different link patterns against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 535-541.
    2. Bao, Z.J. & Cao, Y.J. & Ding, L.J. & Wang, G.Z., 2009. "Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4491-4498.
    3. Tian, Lixin & Huang, Yi & Dong, Gaogao & Du, Ruijin & Shi, Liu, 2014. "Robustness of interdependent and interconnected clustered networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 120-126.
    4. Wang, Jianwei & Li, Yun & Zheng, Qiaofang, 2015. "Cascading load model in interdependent networks with coupled strength," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 242-253.
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. R. Kinney & P. Crucitti & R. Albert & V. Latora, 2005. "Modeling cascading failures in the North American power grid," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 46(1), pages 101-107, July.
    7. Xia, Yongxiang & Fan, Jin & Hill, David, 2010. "Cascading failure in Watts–Strogatz small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1281-1285.
    8. Jianwei Wang & Yuedan Wu & Yun Li, 2015. "Attack robustness of cascading load model in interdependent networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-14.
    9. Jichang Zhao & Daqing Li & Hillel Sanhedrai & Reuven Cohen & Shlomo Havlin, 2016. "Spatio-temporal propagation of cascading overload failures in spatially embedded networks," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.
    12. Cui, Pengshuai & Zhu, Peidong & Shao, Chengcheng & Xun, Peng, 2017. "Cascading failures in interdependent networks due to insufficient received support capability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 777-788.
    13. Zhang, Mingyuan & Liang, Boyuan & Wang, Sheng & Perc, Matjaž & Du, Wenbo & Cao, Xianbin, 2018. "Analysis of flight conflicts in the Chinese air route network," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 97-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zang, Weifei & Ji, Xinsheng & Liu, Shuxin & Wang, Gengrun, 2021. "Percolation on interdependent networks with cliques and weak interdependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    2. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    3. Shi Chen & Hong Zhou & Jingang Lai & Yiwei Zhou & Chang Yu, 2020. "Phase Synchronization Stability of Non-Homogeneous Low-Voltage Distribution Networks with Large-Scale Distributed Generations," Energies, MDPI, vol. 13(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Shangjia & Wang, Haizhong & Mostafizi, Alireza & Song, Xuan, 2020. "A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Li, Zhenpeng & Tang, Xijin, 2019. "Robustness of complex networks to cascading failures induced by Poisson fluctuating loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Bachmann, Ivana & Valdés, Valeria & Bustos-Jiménez, Javier & Bustos, Benjamin, 2022. "Effect of adding physical links on the robustness of the Internet modeled as a physical–logical interdependent network using simple strategies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    4. Zhang, Jiarui & Huang, Jian & Zhang, Zhongjie, 2023. "Analysis of the effect of node attack method on cascading failures in multi-layer directed networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Zhang, Yanlu & Yang, Naiding, 2018. "Vulnerability analysis of interdependent R&D networks under risk cascading propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1056-1068.
    6. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    7. Li, Ruimeng & Yang, Naiding & Zhang, Yanlu & Liu, Hui & Zhang, Mingzhen, 2021. "Impacts of module–module aligned patterns on risk cascading propagation in complex product development (CPD) interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    8. Zhang, Wenping & Xia, Yongxiang & Ouyang, Bo & Jiang, Lurong, 2015. "Effect of network size on robustness of interconnected networks under targeted attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 80-88.
    9. Wang, Ning & Jin, Zi-Yang & Zhao, Jiao, 2021. "Cascading failures of overload behaviors on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    10. Xia, Yongxiang & Zhang, Wenping & Zhang, Xuejun, 2016. "The effect of capacity redundancy disparity on the robustness of interconnected networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 561-568.
    11. Zhao, Yanyan & Zhou, Jie & Zou, Yong & Guan, Shuguang & Gao, Yanli, 2022. "Characteristics of edge-based interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    12. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    13. Chao Zhang & Jingjing Kong & Slobodan P Simonovic, 2018. "Modeling joint restoration strategies for interdependent infrastructure systems," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-18, April.
    14. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    17. Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Ji, Xingpei & Wang, Bo & Liu, Dichen & Dong, Zhaoyang & Chen, Guo & Zhu, Zhenshan & Zhu, Xuedong & Wang, Xunting, 2016. "Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 235-245.
    19. Guo, Hengdao & Zheng, Ciyan & Iu, Herbert Ho-Ching & Fernando, Tyrone, 2017. "A critical review of cascading failure analysis and modeling of power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 9-22.
    20. Yi, Chengqi & Bao, Yuanyuan & Jiang, Jingchi & Xue, Yibo, 2015. "Modeling cascading failures with the crisis of trust in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 256-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:522:y:2019:i:c:p:195-204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.