IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v500y2018icp237-248.html
   My bibliography  Save this article

Experimental and modeling study on relation of pedestrian step length and frequency under different headways

Author

Listed:
  • Zeng, Guang
  • Cao, Shuchao
  • Liu, Chi
  • Song, Weiguo

Abstract

It is important to study pedestrian stepping behavior and characteristics for facility design and pedestrian flow study due to pedestrians’ bipedal movement. In this paper, data of steps are extracted based on trajectories of pedestrians from a single-file experiment. It is found that step length and step frequency will decrease 75% and 33%, respectively, when global density increases from 0.46 ped/m to 2.28 ped/m. With the increment of headway, they will first increase and then remain constant when the headway is beyond 1.16 m and 0.91 m, respectively. Step length and frequency under different headways can be described well by normal distributions. Meanwhile, relationships between step length and frequency under different headways exist. Step frequency decreases with the increment of step length. However, the decrease tendencies depend on headways as a whole. And there are two decrease tendencies: when the headway is between about 0.6 m and 1.0 m, the decrease rate of the step frequency will increase with the increment of step length; while it will decrease when the headway is beyond about 1.0 m and below about 0.6 m. A model is built based on the experiment results. In fundamental diagrams, the results of simulation agree well with those of experiment. The study can be helpful for understanding pedestrian stepping behavior and designing public facilities.

Suggested Citation

  • Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
  • Handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:237-248
    DOI: 10.1016/j.physa.2018.02.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830181X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. von Sivers, Isabella & Köster, Gerta, 2015. "Dynamic stride length adaptation according to utility and personal space," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 104-117.
    2. Ujjal Chattaraj & Armin Seyfried & Partha Chakroborty, 2009. "Comparison Of Pedestrian Fundamental Diagram Across Cultures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-405.
    3. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    4. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    5. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    6. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tie-Qiao & Zhang, Bo-Tao & Zhang, Jian & Wang, Tao, 2019. "Statistical analysis and modeling of pedestrian flow in university canteen during peak period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 29-40.
    2. Xiao, Hanyi & Wang, Qiao & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the single-file movement of mice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 676-686.
    3. Wei, Yidong & Hu, Zuoan & Zeng, Tian & Xie, Wei & Ma, Yi, 2023. "Influence of walkway slope on single-file pedestrian flow dynamics: Results from an experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    6. Liu, Weisong & Zhang, Jun & Rasa, Abdul Rahim & Li, Xudong & Ren, Xiangxia & Song, Weiguo, 2023. "Understanding step synchronization in social groups: A novel method to recognize group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    7. Can Liao & Kejun Zhu & Haixiang Guo & Jian Tang, 2019. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    8. Liu, Weisong & Zhang, Jun & Li, Xudong & Song, Weiguo, 2022. "Avoidance behaviors of pedestrians in a virtual-reality-based experiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    9. Li, Xudong & Telesca, Luciano & Lovallo, Michele & Xu, Xuan & Zhang, Jun & Song, Weiguo, 2020. "Spectral and informational analysis of pedestrian contact force in simulated overcrowding conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Jiang, Yan-Qun & Hu, Ying-Gang & Huang, Xiaoqian, 2022. "Modeling pedestrian flow through a bottleneck based on a second-order continuum model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    11. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Li, Tao & Shi, Dongdong & Chen, Juan & Li, Huiwen & Ma, Jian, 2022. "Experimental study of movement characteristics for different walking postures in a narrow channel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    13. Li, Jinghai & Zheng, Xiaoping, 2023. "Experimental investigation of the stepping dynamics of upstairs walking under time pressure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    14. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    15. Paetzke, Sarah & Boltes, Maik & Seyfried, Armin, 2022. "Influence of individual factors on fundamental diagrams of pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    16. Fu, Zhijian & Xiong, Xingwen & Luo, Lin & Yang, Yunjia & Feng, Yujing & Chen, Hua, 2022. "Influence of rotation on pedestrian flow considering bipedal features: Modeling using a fine discrete floor field cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Thompson, Peter & Tavana, Hossein & Goulding, Cathy & Frantzich, Håkan & Boyce, Karen & Nilsson, Daniel & Larsson, Gabriel & Friholm, Jesper & McGrath, Denise, 2022. "Experimental analyses of step extent and contact buffer in pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    2. Xue, Shuqi & Shiwakoti, Nirajan, 2023. "A meta-synthesis of experimental studies of pedestrian movement in single-file flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Hu, Yanghui & Zhang, Jun & Song, Weiguo, 2019. "Experimental study on the movement strategies of individuals in multidirectional flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    5. Shi, Dongdong & Ma, Jian & Luo, Qian & Li, Xiaofei & Chen, Juan & Lin, Peng, 2021. "Fundamental diagrams of luggage-laden pedestrians ascending and descending stairs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    6. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    7. Huang, Zhongyi & Chraibi, Mohcine & Cao, Shuchao & Huang, Chuanli & Fang, Zhiming & Song, Weiguo, 2019. "A microscopic method for the evaluating of continuous pedestrian dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    9. He, Mengchen & Wang, Qiao & Chen, Juan & Xu, Shiwei & Ma, Jian, 2023. "Modeling pedestrian walking behavior in the flow field with moving walkways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    10. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    11. Bosina, Ernst & Weidmann, Ulrich, 2017. "Estimating pedestrian speed using aggregated literature data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 1-29.
    12. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    13. Sun, Jinlu & Lu, Shouxiang & Lo, Siuming & Ma, Jian & Xie, Qimiao, 2018. "Moving characteristics of single file passengers considering the effect of ship trim and heeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 476-487.
    14. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    15. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    16. Lian, Liping & Ye, Rui & Xia, Long & Song, Weiguo & Zhang, Jun & Li, Xiaolian, 2022. "Pedestrian dynamics in single-file merging flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    17. Fu, Libi & Shi, Qingxin & Qin, Huigui & Zhang, Ying & Shi, Yongqian, 2022. "Analysis of movement behavior of pedestrian social groups through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    18. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    19. Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
    20. Fu, Zhijian & Li, Tao & Deng, Qiangqiang & Schadschneider, Andreas & Luo, Lin & Ma, Jian, 2021. "Effect of turning curvature on the single-file dynamics of pedestrian flow: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:500:y:2018:i:c:p:237-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.