IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v468y2017icp445-453.html
   My bibliography  Save this article

New control strategy for the lattice hydrodynamic model of traffic flow

Author

Listed:
  • Zhu, Chenqiang
  • Zhong, Shiquan
  • Li, Guangyu
  • Ma, Shoufeng

Abstract

The new delayed-feedback control strategy is applied for lattice hydrodynamic model of traffic flow by considering the control signal of the variation rate of the optimal velocity. The linear stability condition is derived in the frequency-domain with control theory. Then, different feedback gains under the periodic boundary scenery and on-ramp scenery are simulated. The periodic boundary scenery provides an initial small disturbance situation on the circle road, while the on-ramp scenery reproduces the disturbance triggered by the on-ramp on the open road. Both the theoretical analysis and simulations show that this new control signal has a positive effect to suppress traffic jams.

Suggested Citation

  • Zhu, Chenqiang & Zhong, Shiquan & Li, Guangyu & Ma, Shoufeng, 2017. "New control strategy for the lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 445-453.
  • Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:445-453
    DOI: 10.1016/j.physa.2016.10.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116307841
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.10.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, H.X. & Cheng, R.J. & Li, Z.P., 2008. "Two velocity difference model for a car following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5239-5245.
    2. Jia, Bin & Jiang, Rui & Wu, Qing-Song & Hu, Mao-bin, 2005. "Honk effect in the two-lane cellular automaton model for traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 544-552.
    3. H. X. Ge & H. B. Zhu & S. Q. Dai, 2006. "Effect of looking backward on traffic flow in a cooperative driving car following model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 54(4), pages 503-507, December.
    4. Michalopoulos, Panos G. & Yi, Ping & Lyrintzis, Anastasios S., 1993. "Continuum modelling of traffic dynamics for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 315-332, August.
    5. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    6. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2000. "Continuum modeling of multiclass traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 123-146, February.
    7. Zhao, Xiaomei & Gao, Ziyou, 2006. "A control method for congested traffic induced by bottlenecks in the coupled map car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 513-522.
    8. Peng, G.H. & Cai, X.H. & Cao, B.F. & Liu, C.Q., 2012. "A new lattice model of traffic flow with the consideration of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 656-663.
    9. Sharma, Sapna, 2015. "Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 401-411.
    10. Ge, Hong-Xia & Cheng, Rong-Jun, 2008. "The “backward looking” effect in the lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(28), pages 6952-6958.
    11. Zhang, Geng & Sun, Di-hua & Liu, Wei-ning & Zhao, Min & Cheng, Sen-lin, 2015. "Analysis of two-lane lattice hydrodynamic model with consideration of drivers’ characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 422(C), pages 16-24.
    12. Wen-Xing Zhu & En-Xian Chi, 2008. "Analysis Of Generalized Optimal Current Lattice Model For Traffic Flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 727-739.
    13. Fan, Hongqiang & Jia, Bin & Tian, Junfang & Yun, Lifen, 2014. "Characteristics of traffic flow at a non-signalized intersection in the framework of game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 172-180.
    14. Tian, Jun-fang & Yuan, Zhen-zhou & Jia, Bin & Li, Ming-hua & Jiang, Guo-jun, 2012. "The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4476-4482.
    15. I. Prigogine & F. C. Andrews, 1960. "A Boltzmann-Like Approach for Traffic Flow," Operations Research, INFORMS, vol. 8(6), pages 789-797, December.
    16. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    17. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    18. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    3. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Zhang, Yu & Wang, Sha & Pan, Dong-bo & Zhang, Geng, 2021. "Stability analysis for a new lattice hydrodynamic model with time-varying delay in sensing traffic flux," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Wang, Tao & Zhang, Yuanshu & Zhang, Jing & Li, Zhen & Li, Shubin, 2020. "New feedback control strategy for optimal velocity traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Pan, Dong-Bo & Zhang, Geng & Jiang, Shan & Zhang, Yu & Cui, Bo-Yuan, 2021. "Delay-independent traffic flux control for a discrete-time lattice hydrodynamic model with time-delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    2. Wang, Tao & Zhang, Yuanshu & Zhang, Jing & Li, Zhen & Li, Shubin, 2020. "New feedback control strategy for optimal velocity traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    3. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    4. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    5. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Zhai, Cong & Wu, Weitiao & Xiao, Yingping & Luo, Qiang & Zhang, Yusong, 2022. "Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    7. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    8. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    9. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    10. Kaur, Ramanpreet & Sharma, Sapna, 2017. "Analysis of driver’s characteristics on a curved road in a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 59-67.
    11. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    12. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    13. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    14. Kaur, Daljeet & Sharma, Sapna & Gupta, Arvind Kumar, 2022. "Analyses of lattice hydrodynamic area occupancy model for heterogeneous disorder traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Redhu, Poonam & Gupta, Arvind Kumar, 2015. "Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 249-260.
    16. Wang, Qingying & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model accounting for the effect of “backward looking” and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 438-446.
    17. Wang, Yunong & Cheng, Rongjun & Ge, Hongxia, 2017. "A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 478-484.
    18. Qin, Shunda & He, Zhiting & Cheng, Rongjun, 2018. "An extended lattice hydrodynamic model based on control theory considering the memory effect of flux difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 809-816.
    19. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    20. Sun, Fengxin & Chow, Andy H.F. & Lo, S.M. & Ge, Hongxia, 2018. "A two-lane lattice hydrodynamic model with heterogeneous lane changing rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 389-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:445-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.