IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v468y2017icp307-314.html
   My bibliography  Save this article

A quantum anharmonic oscillator model for the stock market

Author

Listed:
  • Gao, Tingting
  • Chen, Yu

Abstract

A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

Suggested Citation

  • Gao, Tingting & Chen, Yu, 2017. "A quantum anharmonic oscillator model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 307-314.
  • Handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:307-314
    DOI: 10.1016/j.physa.2016.10.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116307981
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.10.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    2. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    3. Schaden, Martin, 2002. "Quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 511-538.
    4. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    5. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    6. Sharifi, S. & Crane, M. & Shamaie, A. & Ruskin, H., 2004. "Random matrix theory for portfolio optimization: a stability approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(3), pages 629-643.
    7. Takayasu, Misako & Mizuno, Takayuki & Takayasu, Hideki, 2006. "Potential force observed in market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 91-97.
    8. Martin Schaden, 2002. "Quantum Finance," Papers physics/0203006, arXiv.org, revised Aug 2002.
    9. Daly, J. & Crane, M. & Ruskin, H.J., 2008. "Random matrix theory filters in portfolio optimisation: A stability and risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4248-4260.
    10. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    11. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    12. Linetsky, Vadim, 1998. "The Path Integral Approach to Financial Modeling and Options Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 129-163, April.
    13. Chao Zhang & Lu Huang, 2010. "A quantum model for the stock market," Papers 1009.4843, arXiv.org, revised Oct 2010.
    14. Ye, C. & Huang, J.P., 2008. "Non-classical oscillator model for persistent fluctuations in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1255-1263.
    15. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2007. "Analysis of price diffusion in financial markets using PUCK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 187-192.
    16. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    17. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    18. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    19. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryu, Inug & Jang, Hanwool & Kim, Dongshin & Ahn, Kwangwon, 2021. "Market Efficiency of US REITs: A Revisit," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xiangyi & Zhang, Jian-Wei & Xu, Jingjing & Guo, Hong, 2015. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 154-160.
    2. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    3. Pedram, Pouria, 2012. "The minimal length uncertainty and the quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2100-2105.
    4. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.
    5. Jasmina Jekni'c-Dugi'c & Sonja Radi' c & Igor Petrovi'c & Momir Arsenijevi'c & Miroljub Dugi'c, 2018. "Quantum Brownian oscillator for the stock market," Papers 1901.10544, arXiv.org.
    6. Jack Sarkissian, 2016. "Quantum theory of securities price formation in financial markets," Papers 1605.04948, arXiv.org, revised May 2016.
    7. Arias-Calluari, Karina & Najafi, Morteza. N. & Harré, Michael S. & Tang, Yaoyue & Alonso-Marroquin, Fernando, 2022. "Testing stationarity of the detrended price return in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    8. Pouria Pedram, 2011. "The minimal length uncertainty and the quantum model for the stock market," Papers 1111.6859, arXiv.org, revised Jan 2012.
    9. Zhang, Chao & Huang, Lu, 2010. "A quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5769-5775.
    10. Jack Sarkissian, 2016. "Spread, volatility, and volume relationship in financial markets and market making profit optimization," Papers 1606.07381, arXiv.org.
    11. Liviu-Adrian Cotfas, 2012. "A quantum mechanical model for the rate of return," Papers 1211.1938, arXiv.org.
    12. Schmidhuber, Christof, 2021. "Trends, reversion, and critical phenomena in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. F. Bagarello & E. Haven, 2014. "Towards a formalization of a two traders market with information exchange," Papers 1412.8725, arXiv.org.
    14. Ajay Singh & Dinghai Xu, 2016. "Random matrix application to correlations amongst the volatility of assets," Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 69-83, January.
    15. Cotfas, Liviu-Adrian, 2013. "A finite-dimensional quantum model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 371-380.
    16. Liviu-Adrian Cotfas, 2012. "A finite-dimensional quantum model for the stock market," Papers 1204.4614, arXiv.org, revised Sep 2012.
    17. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Schmidhuber, Christof, 2022. "Financial markets and the phase transition between water and steam," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    19. Pineiro-Chousa, Juan & Vizcaíno-González, Marcos, 2016. "A quantum derivation of a reputational risk premium," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 304-309.
    20. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:468:y:2017:i:c:p:307-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.