IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp583-593.html
   My bibliography  Save this article

EMD based refined composite multiscale entropy analysis of complex signals

Author

Listed:
  • Wang, Jing
  • Shang, Pengjian
  • Xia, Jianan
  • Shi, Wenbin

Abstract

Multiscale entropy (MSE) is an effective method to measure the complexity of signals from complex systems, which has been applied to various fields successfully. However, MSE may yield an inaccurate estimate of entropy and induce undefined entropy as the coarse-graining procedure reduces the length of data considerably at large scales. Refined composite multiscale entropy (RCMSE) is then developed to solve this problem. However, trends superimposed in signals may significantly affect the complexity measurement. Thus we introduce an empirical mode decomposition based RCMSE, called EMD–RCMSE to first eliminate such effects of trends and then measure the complexity of signals. It is validated from simulated signals and has good estimation. In addition, this method is also applied to study the complexity of traffic signals and we obtain some interesting results: (1) Traffic signals are more complex than the results showing from RCMSE/MSE; (2) Weekday and weekend patterns (different combination of trends) greatly affect the results; (3) Complexity indices change with time at each day, due to the degree of human activities.

Suggested Citation

  • Wang, Jing & Shang, Pengjian & Xia, Jianan & Shi, Wenbin, 2015. "EMD based refined composite multiscale entropy analysis of complex signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 583-593.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:583-593
    DOI: 10.1016/j.physa.2014.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010346
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ansorge, Rainer, 1990. "What does the entropy condition mean in traffic flow theory?," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 133-143, April.
    2. Costa, M. & Peng, C.-K. & L. Goldberger, Ary & Hausdorff, Jeffrey M., 2003. "Multiscale entropy analysis of human gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 53-60.
    3. Xia, Jianan & Shang, Pengjian & Wang, Jing & Shi, Wenbin, 2014. "Classifying of financial time series based on multiscale entropy and multiscale time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 151-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yi & Shang, Pengjian & Feng, Guochen, 2016. "Modified multiscale cross-sample entropy for complex time series," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 98-110.
    2. Tian, Hu & Zheng, Xiaolong & Zeng, Daniel Danjun, 2019. "Analyzing the dynamic sectoral influence in Chinese and American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    4. Brechtl, Jamieson & Xie, Xie & Liaw, Peter K. & Zinkle, Steven J., 2018. "Complexity modeling and analysis of chaos and other fluctuating phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 166-175.
    5. Xu, Meng & Shang, Pengjian, 2018. "Analysis of financial time series using multiscale entropy based on skewness and kurtosis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1543-1550.
    6. Xia, Jianan & Shang, Pengjian & Lu, Dan & Yin, Yi, 2016. "A comprehensive segmentation analysis of crude oil market based on time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 104-114.
    7. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    8. Xiong, Hui & Shang, Pengjian & Bian, Songhan, 2017. "Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 70-84.
    9. Liu, Yunxiao & Lin, Youfang & Wang, Jing & Shang, Pengjian, 2018. "Refined generalized multiscale entropy analysis for physiological signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 975-985.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2017. "Multiscale recurrence quantification analysis of order recurrence plots," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 381-389.
    2. Huang, Yong & Yang, Dongqing & Wang, Lei & Wang, Kehong, 2020. "Classifying of welding time series based on multi-scale time irreversibility analysis and extreme learning machine," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    4. Natiq, Hayder & Banerjee, Santo & He, Shaobo & Said, M.R.M. & Kilicman, Adem, 2018. "Designing an M-dimensional nonlinear model for producing hyperchaos," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 506-515.
    5. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    6. Litak, Grzegorz & Abadal, Gabriel & Rysak, Andrzej & Przywara, Hubert, 2017. "Complex dynamics of a bistable electrically charged microcantilever: Transition from single well to cross well oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 85-90.
    7. Zeng, Yayun & Wang, Jun & Xu, Kaixuan, 2017. "Complexity and multifractal behaviors of multiscale-continuum percolation financial system for Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 364-376.
    8. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    9. Pan, Junshan & Hu, Hanping & Liu, Ying, 2014. "Human behavior during Flash Crowd in web surfing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 212-219.
    10. Wang, Yuanyuan & Shang, Pengjian, 2018. "A new measurement of financial time irreversibility based on information measures method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 221-230.
    11. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    12. Albarracín E., Eva Susana & Gamboa, Juan C. Rodríguez & Marques, Elaine C.M. & Stosic, Tatijana, 2019. "Complexity analysis of Brazilian agriculture and energy market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 933-941.
    13. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    14. Ma, Xiaofei & Huang, Xiaolin & Shen, Yuxiaotong & Qin, Zike & Ge, Yun & Chen, Ying & Ning, Xinbao, 2017. "EEG based topography analysis in string recognition task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 531-539.
    15. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Yin, Yi & Shang, Pengjian & Feng, Guochen, 2016. "Modified multiscale cross-sample entropy for complex time series," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 98-110.
    17. Zhang, Yongping & Shang, Pengjian, 2018. "Refined composite multiscale weighted-permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 189-199.
    18. Jin, Wen-Long & Gan, Qi-Jian & Gayah, Vikash V., 2013. "A kinematic wave approach to traffic statics and dynamics in a double-ring network," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 114-131.
    19. Zhang, Ningning & Lin, Aijing & Ma, Hui & Shang, Pengjian & Yang, Pengbo, 2018. "Weighted multivariate composite multiscale sample entropy analysis for the complexity of nonlinear times series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 595-607.
    20. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:583-593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.