IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v402y2014icp119-133.html
   My bibliography  Save this article

An extended floor field model based on regular hexagonal cells for pedestrian simulation

Author

Listed:
  • Leng, Biao
  • Wang, Jianyuan
  • Zhao, Wenyuan
  • Xiong, Zhang

Abstract

Recently the floor field (FF) model has been widely used to simulate pedestrian dynamics. This paper presents an extended FF model based on regular hexagonal cells to simulate pedestrian dynamics in a corridor scenario. In this model, the elements in FF model are redefined. Scenarios are discretized into regular hexagonal cells rather than squared ones. Pedestrian repulsion is adopted instead of dynamic floor field. Velocity level is proposed to describe pedestrian movements. Simulations in a corridor scenario are conducted, and the basic property of the new model is discussed deeply, including the parametric effects on flow and wait distribution of pedestrian. The fundamental diagrams of pedestrian dynamics are used to verify the model.

Suggested Citation

  • Leng, Biao & Wang, Jianyuan & Zhao, Wenyuan & Xiong, Zhang, 2014. "An extended floor field model based on regular hexagonal cells for pedestrian simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 119-133.
  • Handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:119-133
    DOI: 10.1016/j.physa.2014.01.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711400051X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.01.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    2. Ezaki, Takahiro & Yanagisawa, Daichi & Ohtsuka, Kazumichi & Nishinari, Katsuhiro, 2012. "Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 291-299.
    3. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    4. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    5. Maniccam, S, 2003. "Traffic jamming on hexagonal lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 653-664.
    6. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    7. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    8. Fang, Jun & Qin, Zheng & Hu, Hao & Xu, Zhaohui & Li, Huan, 2012. "The fundamental diagram of pedestrian model with slow reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6112-6120.
    9. Yang, Lizhong & Li, Jian & Liu, Shaobo, 2008. "Simulation of pedestrian counter-flow with right-moving preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3281-3289.
    10. Weng, W.G. & Pan, L.L. & Shen, S.F. & Yuan, H.Y., 2007. "Small-grid analysis of discrete model for evacuation from a hall," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 821-826.
    11. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    12. Jun Yang & Zhongsheng Hou & Minghui Zhan, 2013. "Simulation Of Pedestrian Dynamic Using A Vector Floor Field Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-16.
    13. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    14. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    15. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    16. Jia-Bei Zeng & Biao Leng & Zhang Xiong & Zheng Qin, 2011. "Pedestrian Dynamics In A Two-Dimensional Complex Scenario Using A Local View Floor Field Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 775-803.
    17. Yue, Hao & Hao, Herui & Chen, Xiaoming & Shao, Chunfu, 2007. "Simulation of pedestrian flow on square lattice based on cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 567-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gwizdałła, Tomasz M., 2015. "Some properties of the floor field cellular automata evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 718-728.
    2. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    4. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    6. Tao, Y.Z. & Dong, L.Y., 2017. "A Cellular Automaton model for pedestrian counterflow with swapping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 155-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    2. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    3. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    4. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    5. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    6. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    7. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    8. Sun, Yi, 2020. "Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    11. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    12. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Gao, Jin & He, Jun & Gong, Jinghai, 2020. "A simplified method to provide evacuation guidance in a multi-exit building under emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    15. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    16. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    17. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    18. Tianran Han & Jianming Zhao & Wenquan Li, 2020. "Smart-Guided Pedestrian Emergency Evacuation in Slender-Shape Infrastructure with Digital Twin Simulations," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    19. Gao, Jin & Zhang, Jingjing & He, Jun & Gong, Jinghai & Zhao, Jincheng, 2020. "Experiment and simulation of pedestrian’s behaviors during evacuation in an office," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:402:y:2014:i:c:p:119-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.