IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i5p1142-1152.html
   My bibliography  Save this article

A microscopic lane changing process model for multilane traffic

Author

Listed:
  • Lv, Wei
  • Song, Wei-guo
  • Liu, Xiao-dong
  • Ma, Jian

Abstract

In previous simulations lane-changing behavior is usually assumed as an instantaneous action. However, in real traffic, lane changing is a continuing process which can seriously affect the following cars. In this paper, a microscopic lane-changing process (LCP) model is clearly described. A new idea of simplifying the lane-changing process to the car-following framework is presented by controlling fictitious cars. To verify the model, the results of flow, lane-changing frequency, and single-car velocity are extracted from experimental observations and are compared with corresponding simulation. It is found that the LCP model agrees well with actual traffic flow and lane-changing behaviors may induce a 12%–18% reduction of traffic flow. The results also reflect that most of the drivers on the two roads in a city are conservative but not aggressive to change lanes. Investigation of lane-changing frequency shows that the largest lane-changing frequency occurs at a medium density range from 15vehskm−1lane−1 to 35vehskm−1lane−1. It also implies that the lane-changing process might strengthen velocity variation at medium density and weaken velocity variation at high density. It is hoped that the idea of this study may be helpful to promote the modeling and simulation study of traffic flow.

Suggested Citation

  • Lv, Wei & Song, Wei-guo & Liu, Xiao-dong & Ma, Jian, 2013. "A microscopic lane changing process model for multilane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1142-1152.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1142-1152
    DOI: 10.1016/j.physa.2012.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112009776
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & Laval, Jorge A., 2005. "Moving bottlenecks: A numerical method that converges in flows," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 855-863, November.
    2. Pete Sykes, 2010. "Traffic Simulation with Paramics," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 131-171, Springer.
    3. Treiber, Martin & Kesting, Arne & Helbing, Dirk, 2006. "Delays, inaccuracies and anticipation in microscopic traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 71-88.
    4. Martin Fellendorf & Peter Vortisch, 2010. "Microscopic Traffic Flow Simulator VISSIM," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 63-93, Springer.
    5. Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
    6. Jordi Casas & Jaime L. Ferrer & David Garcia & Josep Perarnau & Alex Torday, 2010. "Traffic Simulation with Aimsun," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 173-232, Springer.
    7. Komada, Kazuhito & Nagatani, Takashi, 2010. "Traffic flow through multi-lane tollbooths on a toll highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2268-2279.
    8. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    9. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    10. Ronghui Liu, 2010. "Traffic Simulation with DRACULA," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 295-322, Springer.
    11. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming, 2011. "Three-lane changing behaviour simulation using a modified optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2303-2314.
    12. Rickert, M. & Nagel, K. & Schreckenberg, M. & Latour, A., 1996. "Two lane traffic simulations using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 231(4), pages 534-550.
    13. Michael Mahut & Michael Florian, 2010. "Traffic Simulation with Dynameq," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 323-361, Springer.
    14. Patire, Anthony D. & Cassidy, Michael J., 2011. "Lane changing patterns of bane and benefit: Observations of an uphill expressway," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 656-666, May.
    15. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    16. Masao Kuwahara & Ryota Horiguchi & Hisatomo Hanabusa, 2010. "Traffic Simulation with AVENUE," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 95-129, Springer.
    17. Moshe Ben-Akiva & Haris N. Koutsopoulos & Tomer Toledo & Qi Yang & Charisma F. Choudhury & Constantinos Antoniou & Ramachandran Balakrishna, 2010. "Traffic Simulation with MITSIMLab," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 233-268, Springer.
    18. Chowdhury, Debashish & Wolf, Dietrich E. & Schreckenberg, Michael, 1997. "Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 417-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kou, Yukang & Ma, Changxi, 2023. "Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    2. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
    3. Ziwen Song & Feng Sun & Rongji Zhang & Yingcui Du & Guiliang Zhou, 2021. "An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    4. Wang, Jinghui & Lv, Wei & Jiang, Yajuan & Qin, Shuangshuang & Li, Jiawei, 2021. "A multi-agent based cellular automata model for intersection traffic control simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    5. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    6. Huang, Jian & Hu, Mao-Bin & Jiang, Rui & Li, Ming, 2018. "Effect of pre-signals in a Manhattan-like urban traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 71-85.
    7. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Shanchuan Yu & Yu Chen & Lang Song & Zhaoze Xuan & Yi Li, 2023. "Modelling and Mitigating Secondary Crash Risk for Serial Tunnels on Freeway via Lighting-Related Microscopic Traffic Model with Inter-Lane Dependency," IJERPH, MDPI, vol. 20(4), pages 1-29, February.
    9. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    2. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming, 2011. "Three-lane changing behaviour simulation using a modified optimal velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2303-2314.
    3. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    4. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    5. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    6. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    7. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    9. Wang, Jinghui & Lv, Wei & Jiang, Yajuan & Qin, Shuangshuang & Li, Jiawei, 2021. "A multi-agent based cellular automata model for intersection traffic control simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    10. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    11. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    12. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    13. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    14. Mu, Rui & Yamamoto, Toshiyuki, 2019. "Analysis of traffic flow with micro-cars with respect to safety and environmental impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 217-241.
    15. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    16. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    17. Ronan Keane & H. Oliver Gao, 2021. "Fast Calibration of Car-Following Models to Trajectory Data Using the Adjoint Method," Transportation Science, INFORMS, vol. 55(3), pages 592-615, May.
    18. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    20. Huang, Jian & Hu, Mao-Bin & Jiang, Rui & Li, Ming, 2018. "Effect of pre-signals in a Manhattan-like urban traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 71-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:5:p:1142-1152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.