IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v358y2005i2p516-528.html
   My bibliography  Save this article

Experiment and simulation for counterflow of people going on all fours

Author

Listed:
  • Nagai, Ryoichi
  • Fukamachi, Masahiro
  • Nagatani, Takashi

Abstract

Counterflow of students going on all fours is investigated by experiment and simulation. The experiment is performed for the channel with open boundaries. Two types of students going to the right and to the left are taken into account. The video recordings and measurements of individual arrival times are evaluated. The characteristics of counterflow are clarified experimentally. The counterflow of students on all fours is compared with the pedestrian counterflow. The experiment is mimicked by the lattice gas simulation where each student going on all fours is simulated by a biased random walker occupying two sites. The simulation result is compared with the experimental result. It is shown that the experimental result is consistent with the simulation result.

Suggested Citation

  • Nagai, Ryoichi & Fukamachi, Masahiro & Nagatani, Takashi, 2005. "Experiment and simulation for counterflow of people going on all fours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 358(2), pages 516-528.
  • Handle: RePEc:eee:phsmap:v:358:y:2005:i:2:p:516-528
    DOI: 10.1016/j.physa.2005.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105003936
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    2. Ana Luisa Ballinas-Hernández & Angélica Muñoz-Meléndez & Alejandro Rangel-Huerta, 2011. "Multiagent System Applied to the Modeling and Simulation of Pedestrian Traffic in Counterflow," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-2.
    3. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    4. Robin, Th. & Antonini, G. & Bierlaire, M. & Cruz, J., 2009. "Specification, estimation and validation of a pedestrian walking behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 36-56, January.
    5. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    6. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    7. Zhou, Xuemei & Hu, Jingjie & Ji, Xiangfeng & Xiao, Xiongziyan, 2019. "Cellular automaton simulation of pedestrian flow considering vision and multi-velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 982-992.
    8. Zhang, Qi, 2015. "Simulation model of bi-directional pedestrian considering potential effect ahead and behind," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 335-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:358:y:2005:i:2:p:516-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.