IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v287y2000i3p587-598.html
   My bibliography  Save this article

Chaos control in economical model by time-delayed feedback method

Author

Listed:
  • Hołyst, Janusz A
  • Urbanowicz, Krzysztof

Abstract

A two-dimensional map describing chaotic behaviour of an economic model has been stabilized on various periodic orbits by the use of Pyragas time-delayed feedback control. The method avoids fancy data processing used in the Ott–Grebogi–Yorke approach and is based solely on the plain measurement and time lag of a scalar signal which in our case is a value of sales of a firm following an active investment strategy (Behrens–Feichtinger model). We show that the application of this control method is very straightforward and one can easily switch from a chaotic trajectory to a regular periodic orbit and simultaneously improve the system's economic properties.

Suggested Citation

  • Hołyst, Janusz A & Urbanowicz, Krzysztof, 2000. "Chaos control in economical model by time-delayed feedback method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 587-598.
  • Handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:587-598
    DOI: 10.1016/S0378-4371(00)00395-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100003952
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(00)00395-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Zhanwen & Wang, Qiao & Jiang, Shumin, 2014. "Analysis on the dynamics of a Cournot investment game with bounded rationality," Economic Modelling, Elsevier, vol. 39(C), pages 204-212.
    2. Salarieh, Hassan & Alasty, Aria, 2008. "Delayed feedback control via minimum entropy strategy in an economic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 851-860.
    3. Ding, Yuting & Jiang, Weihua & Wang, Hongbin, 2012. "Hopf-pitchfork bifurcation and periodic phenomena in nonlinear financial system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1048-1057.
    4. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    5. H. Norouzi Nav & M. R. Jahed Motlagh & A. Makui, 2017. "Robust controlling of chaotic behavior in supply chain networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(6), pages 711-724, June.
    6. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    7. Lin, Jinchai & Fan, Ruguo & Tan, Xianchun & Zhu, Kaiwei, 2021. "Dynamic decision and coordination in a low-carbon supply chain considering the retailer's social preference," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    8. Peng, Yu & Lu, Qian, 2015. "Complex dynamics analysis for a duopoly Stackelberg game model with bounded rationality," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 259-268.
    9. Yu, Weisheng & Yu, Yu, 2014. "The complexion of dynamic duopoly game with horizontal differentiated products," Economic Modelling, Elsevier, vol. 41(C), pages 289-297.
    10. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    11. Veronika Novotná & Vladěna Štěpánková, 2015. "Parameter Estimation for Dynamic Model of the Financial System," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 2051-2055.
    12. Junhai Ma & Lijian Sun & Xueli Zhan, 2017. "Study on Triopoly Dynamic Game Model Based on Different Demand Forecast Methods in the Market," Complexity, Hindawi, vol. 2017, pages 1-12, July.
    13. Chen, Wei-Ching, 2008. "Dynamics and control of a financial system with time-delayed feedbacks," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1198-1207.
    14. Xin, Baogui & Chen, Tong, 2011. "On a master-slave Bertrand game model," Economic Modelling, Elsevier, vol. 28(4), pages 1864-1870, July.
    15. Qiuxiang Li & Mengnan Shi & Yimin Huang, 2019. "A Dynamic Price Game Model in a Low-Carbon, Closed-Loop Supply Chain Considering Return Rates and Fairness Concern Behaviors," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    16. Akhmet, Marat & Akhmetova, Zhanar & Fen, Mehmet Onur, 2014. "Chaos in economic models with exogenous shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 95-108.
    17. Jahanshahi, Hadi & Yousefpour, Amin & Wei, Zhouchao & Alcaraz, Raúl & Bekiros, Stelios, 2019. "A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 66-77.
    18. Qiuxiang Li & Xingli Chen & Yimin Huang, 2019. "The Stability and Complexity Analysis of a Low-Carbon Supply Chain Considering Fairness Concern Behavior and Sales Service," IJERPH, MDPI, vol. 16(15), pages 1-21, July.
    19. Ding, Zhanwen & Li, Qiang & Jiang, Shumin & Wang, Xuedi, 2015. "Dynamics in a Cournot investment game with heterogeneous players," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 939-950.
    20. S. S. Askar, 2020. "Duopolistic Stackelberg game: investigation of complex dynamics and chaos control," Operational Research, Springer, vol. 20(3), pages 1685-1699, September.
    21. Son, Woo-Sik & Park, Young-Jai, 2011. "Delayed feedback on the dynamical model of a financial system," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 208-217.
    22. Askar, S.S., 2018. "Tripoly Stackelberg game model: One leader versus two followers," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 301-311.
    23. Costea, Carmen, 2006. "Comments on the use of network structures to analyse commercial companies’ evolution and their impact on economic behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 140-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:287:y:2000:i:3:p:587-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.