IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v158y2019icp162-178.html
   My bibliography  Save this article

Techno-economical optimization of wind power production including lithium and/or hydrogen sizing in the context of the day ahead market in island grids

Author

Listed:
  • Hernández-Torres, David
  • Turpin, Christophe
  • Roboam, Xavier
  • Sareni, Bruno

Abstract

In this article an optimal storage sizing based on technical and economical modeling is presented. A focus is made on wind power producers participating in day-ahead markets for island networks and energy storage using Li-Ion and H2/O2 batteries. The modeling approach is based on power flow models and detailed optimization-oriented techniques. An importance is given to the storage device ageing effects on the overall hybrid system levelized cost of the energy. The results are presented for the special case of renewable power integration in the French islands networks. The analysis obtained after the results shows the importance of this type of modeling tool for decision making during the initial conceptual design level.

Suggested Citation

  • Hernández-Torres, David & Turpin, Christophe & Roboam, Xavier & Sareni, Bruno, 2019. "Techno-economical optimization of wind power production including lithium and/or hydrogen sizing in the context of the day ahead market in island grids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 162-178.
  • Handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:162-178
    DOI: 10.1016/j.matcom.2018.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418301940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2018.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2006. "Economical and environmental analysis of grid connected photovoltaic systems in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1107-1128.
    2. Dean Prichard & James Theiler, 1994. "Generating Surrogate Data for Time Series with Several Simultaneously Measured Variables," Working Papers 94-04-023, Santa Fe Institute.
    3. Hernández-Torres, David & Bridier, Laurent & David, Mathieu & Lauret, Philippe & Ardiale, Thomas, 2015. "Technico-economical analysis of a hybrid wave power-air compression storage system," Renewable Energy, Elsevier, vol. 74(C), pages 708-717.
    4. Bridier, Laurent & Hernández-Torres, David & David, Mathieu & Lauret, Phillipe, 2016. "A heuristic approach for optimal sizing of ESS coupled with intermittent renewable sources systems," Renewable Energy, Elsevier, vol. 91(C), pages 155-165.
    5. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe," Renewable Energy, Elsevier, vol. 50(C), pages 889-900.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    2. Andrea Beltratti & Claudio Morana, 2006. "Net Inflows and Time-Varying Alphas: The Case of Hedge Funds," ICER Working Papers 30-2006, ICER - International Centre for Economic Research.
    3. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    4. Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    5. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.
    6. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    9. Hinich Melvin J & Mendes Eduardo M & Stone Lewi, 2005. "Detecting Nonlinearity in Time Series: Surrogate and Bootstrap Approaches," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-15, December.
    10. Yajing Gao & Jing Zhu & Huaxin Cheng & Fushen Xue & Qing Xie & Peng Li, 2016. "Study of Short-Term Photovoltaic Power Forecast Based on Error Calibration under Typical Climate Categories," Energies, MDPI, vol. 9(7), pages 1-15, July.
    11. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    12. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    13. Bourbon, R. & Ngueveu, S.U. & Roboam, X. & Sareni, B. & Turpin, C. & Hernandez-Torres, D., 2019. "Energy management optimization of a smart wind power plant comparing heuristic and linear programming methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 418-431.
    14. Ferrari, Francesco & Besio, Giovanni & Cassola, Federico & Mazzino, Andrea, 2020. "Optimized wind and wave energy resource assessment and offshore exploitability in the Mediterranean Sea," Energy, Elsevier, vol. 190(C).
    15. Milan Palus & L. Pecen & D. Pivka, 1995. "Estimating Predictability: Redundancy and Surrogate Data Method," Working Papers 95-07-060, Santa Fe Institute.
    16. Lappalainen, Kari & Valkealahti, Seppo, 2022. "Sizing of energy storage systems for ramp rate control of photovoltaic strings," Renewable Energy, Elsevier, vol. 196(C), pages 1366-1375.
    17. Portillo, J.C.C. & Reis, P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2019. "Backward bent-duct buoy or frontward bent-duct buoy? Review, assessment and optimisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 353-368.
    18. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    19. Dashtian, Hassan & Jafari, G. Reza & Sahimi, Muhammad & Masihi, Mohsen, 2011. "Scaling, multifractality, and long-range correlations in well log data of large-scale porous media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2096-2111.
    20. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:158:y:2019:i:c:p:162-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.