IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v104y2014icp21-30.html
   My bibliography  Save this article

An accelerated-time simulation of car traffic on a motorway using a CAS

Author

Listed:
  • Aguilera, Gabriel
  • Galán, José Luis
  • García, José Manuel
  • Mérida, Enrique
  • Rodríguez, Pedro

Abstract

In this paper we introduce a new model, called the GRAM model, that provides an accelerated-time simulation of traffic on a motorway. The model provides an accelerated-time simulation using ideas and techniques from both cellular automata and neural network models. It has been implemented in a package using a Computer Algebra System (CAS) for the development of algorithms and a Java environment to display the simulated results graphically.

Suggested Citation

  • Aguilera, Gabriel & Galán, José Luis & García, José Manuel & Mérida, Enrique & Rodríguez, Pedro, 2014. "An accelerated-time simulation of car traffic on a motorway using a CAS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 104(C), pages 21-30.
  • Handle: RePEc:eee:matcom:v:104:y:2014:i:c:p:21-30
    DOI: 10.1016/j.matcom.2012.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475412001140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2012.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguilera, Gabriel & Luis Galán, José & Madrid, Rafael & Martínez, Antonio Manuel & Padilla, Yolanda & Rodríguez, Pedro, 2010. "Automated generation of contrapuntal musical compositions using probabilistic logic in Derive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(6), pages 1200-1211.
    2. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    3. Roanes-Lozano, Eugenio & Laita, Luis M. & Roanes-Macı́as, Eugenio, 2004. "An accelerated-time simulation of departing passengers’ flow in airport terminals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 67(1), pages 163-172.
    4. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galán-García, José L. & Aguilera-Venegas, Gabriel & Galán-García, María Á. & Rodríguez-Cielos, Pedro & Atencia-Mc.Killop, Iván, 2018. "Improving CAS capabilities: New rules for computing improper integrals," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 525-540.
    2. Raja, Muhammad Asif Zahoor & Samar, Raza & Manzar, Muhammad Anwar & Shah, Syed Muslim, 2017. "Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 139-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    2. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    5. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    6. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    7. Kim, T. & Zhang, H.M., 2008. "A stochastic wave propagation model," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 619-634, August.
    8. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    9. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    10. Mads Paulsen & Thomas Kjær Rasmussen & Otto Anker Nielsen, 2022. "Including Right-of-Way in a Joint Large-Scale Agent-Based Dynamic Traffic Assignment Model for Cars and Bicycles," Networks and Spatial Economics, Springer, vol. 22(4), pages 915-957, December.
    11. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    12. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    13. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    14. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    15. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    16. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    17. Daganzo, Carlos F., 2010. "On the Stability of Freeway Traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4vf597r5, Institute of Transportation Studies, UC Berkeley.
    18. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    19. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    20. Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:104:y:2014:i:c:p:21-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.