IDEAS home Printed from https://ideas.repec.org/a/eee/marpol/v63y2016icp35-44.html
   My bibliography  Save this article

Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility

Author

Listed:
  • Lees, Kirsty J.
  • Guerin, Andrew J.
  • Masden, Elizabeth A.

Abstract

If Scottish Government targets are met, the equivalent of 100% of Scotland's electricity demand will be generated from renewable sources by 2020. There are several possible risks posed to seabirds from marine renewable energy installations (MREIs) and many knowledge gaps still exist around the extent to which seabird habitats can overlap with MREIs. In this study, underlying seasonal and interannual variation in seabird distributions was investigated using kernel density estimation (KDE) to identify areas of core habitat use. This allowed the potential interactions between seabirds and a wave energy converter (WEC) to be assessed. The distributions of four seabird species were compared between seasons, years, and in the presence and absence of WECs. Although substantial interannual variation existed in baseline years prior to WEC deployment, the KDEs for all four species analysed were closer to the mooring points in the presence of a WEC in at least one season. The KDEs for all four species also increased in area in at least one season in the presence of a WEC. The KDEs of the northern fulmar and great skua overlapped the mooring points during spring in the presence of a device. The density of observations close to the mooring points increased for great skua, northern gannet, and northern fulmar during summer in the presence of a device. These results suggest that none of the four species analysed have shown avoidance or an extreme change in distribution as a result of the presence of a WEC. The continued monitoring of seabirds during WEC deployments is necessary to provide further data on how distributions may change in response to the presence of WECs.

Suggested Citation

  • Lees, Kirsty J. & Guerin, Andrew J. & Masden, Elizabeth A., 2016. "Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility," Marine Policy, Elsevier, vol. 63(C), pages 35-44.
  • Handle: RePEc:eee:marpol:v:63:y:2016:i:c:p:35-44
    DOI: 10.1016/j.marpol.2015.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308597X15002845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.marpol.2015.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langton, R. & Davies, I.M. & Scott, B.E., 2014. "A simulation model coupling the behaviour and energetics of a breeding central place forager to assess the impact of environmental changes," Ecological Modelling, Elsevier, vol. 273(C), pages 31-43.
    2. Soanes, L.M. & Atkinson, P.W. & Gauvain, R.D. & Green, J.A., 2013. "Individual consistency in the foraging behaviour of Northern Gannets: Implications for interactions with offshore renewable energy developments," Marine Policy, Elsevier, vol. 38(C), pages 507-514.
    3. Masden, Elizabeth A. & McCluskie, Aly & Owen, Ellie & Langston, Rowena H.W., 2015. "Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK," Marine Policy, Elsevier, vol. 51(C), pages 169-172.
    4. T. A. Marques & S. T. Buckland & D. L. Borchers & D. Tosh & R. A. McDonald, 2010. "Point Transect Sampling Along Linear Features," Biometrics, The International Biometric Society, vol. 66(4), pages 1247-1255, December.
    5. Shields, Mark A. & Dillon, Lora Jane & Woolf, David K. & Ford, Alex T., 2009. "Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK)," Marine Policy, Elsevier, vol. 33(4), pages 635-642, July.
    6. Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galparsoro, I. & Korta, M. & Subirana, I. & Borja, Á. & Menchaca, I. & Solaun, O. & Muxika, I. & Iglesias, G. & Bald, J., 2021. "A new framework and tool for ecological risk assessment of wave energy converters projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Martínez, M.L. & Vázquez, G. & Pérez-Maqueo, O. & Silva, R. & Moreno-Casasola, P. & Mendoza-González, G. & López-Portillo, J. & MacGregor-Fors, I. & Heckel, G. & Hernández-Santana, J.R. & García-Franc, 2021. "A systemic view of potential environmental impacts of ocean energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.
    2. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    3. Ge, Suqin & Macieira, João, 2020. "Unobserved Worker Quality and Inter-Industry Wage Differentials," GLO Discussion Paper Series 491, Global Labor Organization (GLO).
    4. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    5. Karin Sinclair & Andrea E. Copping & Roel May & Finlay Bennet & Marijke Warnas & Muriel Perron & Åsa Elmqvist & Elise DeGeorge, 2018. "Resolving environmental effects of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    6. R, Hall & E, Topham & E, João, 2022. "Environmental Impact Assessment for the decommissioning of offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
    8. Fox, Clive J. & Benjamins, Steven & Masden, Elizabeth A. & Miller, Raeanne, 2018. "Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1926-1938.
    9. Waggitt, J.J & Scott, B.E, 2014. "Using a spatial overlap approach to estimate the risk of collisions between deep diving seabirds and tidal stream turbines: A review of potential methods and approaches," Marine Policy, Elsevier, vol. 44(C), pages 90-97.
    10. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Campbell, Maria S. & Stehfest, Kilian M. & Votier, Stephen C. & Hall-Spencer, Jason M., 2014. "Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy," Marine Policy, Elsevier, vol. 45(C), pages 293-300.
    12. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    13. Jens Lüdeke, 2017. "Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-31, March.
    14. Ya-Tsune Sie & Pierre-Alexandre Château & Yang-Chi Chang & Shiau-Yun Lu, 2018. "Stakeholders Opinions on Multi-Use Deep Water Offshore Platform in Hsiao-Liu-Chiu, Taiwan," IJERPH, MDPI, vol. 15(2), pages 1-13, February.
    15. Pablo Martínez-Camblor & Sonia Pérez-Fernández & Susana Díaz-Coto, 2021. "Optimal classification scores based on multivariate marker transformations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 581-599, December.
    16. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    17. Willsteed, Edward A. & Jude, Simon & Gill, Andrew B. & Birchenough, Silvana N.R., 2018. "Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2332-2345.
    18. R. N. Rattihalli & S. B. Patil, 2021. "Data Dependent Asymmetric Kernels for Estimating the Density Function," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 155-186, February.
    19. Adcock, Thomas A.A. & Draper, Scott, 2014. "Power extraction from tidal channels – Multiple tidal constituents, compound tides and overtides," Renewable Energy, Elsevier, vol. 63(C), pages 797-806.
    20. Möller, N.J. & Kim, H. & Neary, V.S. & García, M.H. & Chamorro, L.P., 2016. "On the near-wall effects induced by an axial-flow rotor," Renewable Energy, Elsevier, vol. 91(C), pages 524-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:marpol:v:63:y:2016:i:c:p:35-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/marpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.