IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v118y2022ics026483772200182x.html
   My bibliography  Save this article

Relationships between urban form and air quality: A reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic

Author

Listed:
  • Sun, Jianing
  • Zhou, Tao
  • Wang, Di

Abstract

The outbreak of Coronavirus disease 2019 (COVID-19) led to the widespread stagnation of urban activities, resulting in a significant reduction in industrial pollution and traffic pollution. This affected how urban form influences air quality. This study reconsiders the influence of urban form on air quality in five urban agglomerations in China during the pandemic period. The random forest algorithm was used to quantitate the urban form–air quality relationship. The urban form was described by urban size, shape, fragmentation, compactness, and sprawl. Air quality was evaluated by the Air Quality Index (AQI) and the concentration of six pollutants (CO, O3, NO2, PM2.5, PM10, SO2). The results showed that urban fragmentation is the most important factor affecting air quality and the concentration of the six pollutants. Additionally, the relationship between urban form and air quality varies in different urban agglomerations. By analyzing the extremely important indicators affecting air pollution, the urban form–air quality relationship in Beijing-Tianjin-Hebei is rather complex. In the Chengdu-Chongqing and the Pearl River Delta, urban sprawl and urban compactness are extremely important indicators for some air pollutants, respectively. Furthermore, urban shape ranks first for some air pollutants both in the Triangle of Central China and the Yangtze River Delta. Based on the robustness test, the performance of the random forest model is better than that of the multiple linear regression (MLR) model and the extreme gradient boosting (XGBoost) model.

Suggested Citation

  • Sun, Jianing & Zhou, Tao & Wang, Di, 2022. "Relationships between urban form and air quality: A reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic," Land Use Policy, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:lauspo:v:118:y:2022:i:c:s026483772200182x
    DOI: 10.1016/j.landusepol.2022.106155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483772200182X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2022.106155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    2. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    3. Ma, Jun & Cheng, Jack C.P. & Jiang, Feifeng & Chen, Weiwei & Zhang, Jingcheng, 2020. "Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques," Land Use Policy, Elsevier, vol. 94(C).
    4. Xiaohong Liu, 2019. "Effects of Urban Density and City Size on Haze Pollution in China: Spatial Regression Analysis Based on 253 Prefecture-Level Cities PM 2.5 Data," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-8, December.
    5. Nyamekye, Clement & Kwofie, Samuel & Ghansah, Benjamin & Agyapong, Emmanuel & Boamah, Linda Appiah, 2020. "Assessing urban growth in Ghana using machine learning and intensity analysis: A case study of the New Juaben Municipality," Land Use Policy, Elsevier, vol. 99(C).
    6. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    7. Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Matthew A. Cole & Ceren Ozgen & Eric Strobl, 2020. "Air Pollution Exposure and Covid-19 in Dutch Municipalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 581-610, August.
    9. Higgins, Christopher D. & Adams, Matthew D. & Réquia, Weeberb J. & Mohamed, Moataz, 2019. "Accessibility, air pollution, and congestion: Capturing spatial trade-offs from agglomeration in the property market," Land Use Policy, Elsevier, vol. 84(C), pages 177-191.
    10. Chia-An Ku, 2020. "Exploring the Spatial and Temporal Relationship between Air Quality and Urban Land-Use Patterns Based on an Integrated Method," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    11. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    12. Yupeng Liu & Jianguo Wu & Deyong Yu, 2018. "Disentangling the Complex Effects of Socioeconomic, Climatic, and Urban Form Factors on Air Pollution: A Case Study of China," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    13. Maria Ikram & Zhijun Yan & Yan Liu & Weihua Qu, 2015. "Seasonal effects of temperature fluctuations on air quality and respiratory disease: a study in Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 833-853, November.
    14. Matthew A Cole & Ceren Ozgen & Eric Strobl, 2020. "Air Pollution Exposure and Covid-19," Discussion Papers 20-13, Department of Economics, University of Birmingham.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan Song & Zhiji Huang, 2022. "Exploring the Effects of Industrial Land Transfer on Urban Air Quality Using a Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica Cappelli & Gianni Guastella & Stefano Pareglio, 2021. "Urban Sprawl and Air Quality in European Cities: an Empirical Assessment," Working Papers 2021.07, Fondazione Eni Enrico Mattei.
    2. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    3. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    4. Lisa Bauleo & Simone Giannini & Andrea Ranzi & Federica Nobile & Massimo Stafoggia & Carla Ancona & Ivano Iavarone & the EpiCovAir Study Group, 2022. "A Methodological Approach to Use Contextual Factors for Epidemiological Studies on Chronic Exposure to Air Pollution and COVID-19 in Italy," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    5. Noi, Evgeny & Murray, Alan T., 2022. "Interpolation biases in assessing spatial heterogeneity of outdoor air quality in Moscow, Russia," Land Use Policy, Elsevier, vol. 112(C).
    6. C. Bambang Dwi Kuncoro & Cornelia Adristi & Moch Bilal Zaenal Asyikin, 2022. "Smart Wireless Particulate Matter Sensor Node for IoT-Based Strategic Monitoring Tool of Indoor COVID-19 Infection Risk via Airborne Transmission," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    7. Liu, Ziheng & Chen, Xi & Lu, Qinan, 2023. "Blowin' in the Wind of an Invisible Killer: Long-Term Exposure to Ozone and Respiratory Mortality in the United States," IZA Discussion Papers 15981, Institute of Labor Economics (IZA).
    8. Brandon Michael Taylor & Michael Ash & Lawrence Peter King, 2022. "Initially High Correlation between Air Pollution and COVID-19 Mortality Declined to Zero as the Pandemic Progressed: There Is No Evidence for a Causal Link between Air Pollution and COVID-19 Vulnerabi," IJERPH, MDPI, vol. 19(16), pages 1-9, August.
    9. Aubert, Cécile & Dang, Hai-Anh & Nguyen, Manh-Hung, 2022. "The Unequal Impact of the COVID Pandemic: Theory and Evidence on Health and Economic Outcomes for Different Income Groups," IZA Discussion Papers 15396, Institute of Labor Economics (IZA).
    10. Jorge A Bonilla & Alejandro Lopez-Feldman & Paula Pereda & Nathaly M. Rivera & J. Cristobal Ruiz-Tagle, 2021. "Long-Term Air Pollution Exposure and COVID-19 Mortality in Latin America," Working Papers, Department of Economics 2021_23, University of São Paulo (FEA-USP), revised 02 Feb 2023.
    11. Fang Fang & Lina Mu & Yifang Zhu & Jianyu Rao & Jody Heymann & Zuo-Feng Zhang, 2021. "Long-Term Exposure to PM 2.5 , Facemask Mandates, Stay Home Orders and COVID-19 Incidence in the United States," IJERPH, MDPI, vol. 18(12), pages 1-12, June.
    12. Armando Cartenì & Furio Cascetta & Luigi Di Francesco & Felisia Palermo, 2021. "Particulate Matter Short-Term Exposition, Mobility Trips and COVID-19 Diffusion: A Correlation Analyses for the Italian Case Study at Urban Scale," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    13. Adel Ben Youssef & Mounir Dahmani & Séverine Borderon-Carrez, 2021. "Territories’ adaptation to climate change and the effects of pandemics," Post-Print halshs-03507278, HAL.
    14. Macarena Valdés Salgado & Pamela Smith & Mariel A. Opazo & Nicolás Huneeus, 2021. "Long-Term Exposure to Fine and Coarse Particulate Matter and COVID-19 Incidence and Mortality Rate in Chile during 2020," IJERPH, MDPI, vol. 18(14), pages 1-12, July.
    15. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    16. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2021. "Environment, public debt and epidemics," AMSE Working Papers 2128, Aix-Marseille School of Economics, France.
    17. Brandily, Paul & Brébion, Clément & Briole, Simon & Khoury, Laura, 2021. "A poorly understood disease? The impact of COVID-19 on the income gradient in mortality over the course of the pandemic," European Economic Review, Elsevier, vol. 140(C).
    18. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    19. Changchun Feng & Hao Zhang & Liang Xiao & Yongpei Guo, 2022. "Land Use Change and Its Driving Factors in the Rural–Urban Fringe of Beijing: A Production–Living–Ecological Perspective," Land, MDPI, vol. 11(2), pages 1-18, February.
    20. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:118:y:2022:i:c:s026483772200182x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.