IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v60y2019icp262-276.html
   My bibliography  Save this article

A framework for firm-level critical material supply management and mitigation

Author

Listed:
  • Griffin, Gillian
  • Gaustad, Gabrielle
  • Badami, Kedar

Abstract

Organizations of all sizes are vulnerable to critical material supply disruptions. Although there is a significant body of literature that examines how large entities such as nations and governments can assess and mitigate criticality, there is very little work that addresses firm-level criticality in a way that is actionable for businesses. This work uses literature review and case study analysis to understand the impact of critical material supply risk at the firm level, and to determine salient internal indicators. A total of 42 criticality studies were reviewed and the findings were used to develop a matrix to assess and monitor criticality risk using internal firm-specific data. The matrix incorporates three categories of risk including product concept viability, production, and profitability. It also contains four key business functions including finance, procurement, marketing, and production. These aspects were chosen because they are relevant to all businesses that produce and sell manufactured goods, and because they represent dynamics that are within the control of an individual firm. Unlike the global and national level indicators emphasized in most current research, the indicators proposed in this research are derived from data that firms can compile with reasonable ease. Finally, this work considers the role of the organization in criticality risk assessment and mitigation through an examination of the data needed to complete the aforementioned matrix and the likely sources of that information. The findings of this analysis elucidate the gap between internal and external and micro- and macro- criticality assessment, as well as provide a framework for firm-level criticality mitigation.

Suggested Citation

  • Griffin, Gillian & Gaustad, Gabrielle & Badami, Kedar, 2019. "A framework for firm-level critical material supply management and mitigation," Resources Policy, Elsevier, vol. 60(C), pages 262-276.
  • Handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:262-276
    DOI: 10.1016/j.resourpol.2018.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718304112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. E. Graedel & Barbara K. Reck, 2016. "Six Years of Criticality Assessments: What Have We Learned So Far?," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 692-699, August.
    2. Blengini, Gian Andrea & Nuss, Philip & Dewulf, Jo & Nita, Viorel & Peirò, Laura Talens & Vidal-Legaz, Beatriz & Latunussa, Cynthia & Mancini, Lucia & Blagoeva, Darina & Pennington, David & Pellegrini,, 2017. "EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements," Resources Policy, Elsevier, vol. 53(C), pages 12-19.
    3. Helbig, Christoph & Wietschel, Lars & Thorenz, Andrea & Tuma, Axel, 2016. "How to evaluate raw material vulnerability - An overview," Resources Policy, Elsevier, vol. 48(C), pages 13-24.
    4. Lapko, Yulia & Trucco, Paolo & Nuur, Cali, 2016. "The business perspective on materials criticality: Evidence from manufacturers," Resources Policy, Elsevier, vol. 50(C), pages 93-107.
    5. Nieto, Antonio & Guelly, Kirsten & Kleit, Andrew, 2013. "Addressing criticality for rare earth elements in petroleum refining: The key supply factors approach," Resources Policy, Elsevier, vol. 38(4), pages 496-503.
    6. Georges Daw, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01591701, HAL.
    7. Bustamante, Michele L. & Gaustad, Gabrielle, 2014. "Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics," Applied Energy, Elsevier, vol. 123(C), pages 397-414.
    8. S Cannella & A P Barbosa-Póvoa & J M Framinan & S Relvas, 2013. "Metrics for bullwhip effect analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(1), pages 1-16, January.
    9. Brown, Teresa, 2018. "Measurement of mineral supply diversity and its importance in assessing risk and criticality," Resources Policy, Elsevier, vol. 58(C), pages 202-218.
    10. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    11. Daw, Georges, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Resources Policy, Elsevier, vol. 53(C), pages 173-189.
    12. Rosenau-Tornow, Dirk & Buchholz, Peter & Riemann, Axel & Wagner, Markus, 2009. "Assessing the long-term supply risks for mineral raw materials--a combined evaluation of past and future trends," Resources Policy, Elsevier, vol. 34(4), pages 161-175, December.
    13. Achzet, Benjamin & Helbig, Christoph, 2013. "How to evaluate raw material supply risks—an overview," Resources Policy, Elsevier, vol. 38(4), pages 435-447.
    14. Georges Daw, 2017. "Security of mineral resources: A new framework for quantitative assessment of criticality," Post-Print halshs-01552131, HAL.
    15. Kevin B. Hendricks & Vinod R. Singhal, 2005. "Association Between Supply Chain Glitches and Operating Performance," Management Science, INFORMS, vol. 51(5), pages 695-711, May.
    16. Jasiński, Dominik & Cinelli, Marco & Dias, Luis C. & Meredith, James & Kirwan, Kerry, 2018. "Assessing supply risks for non-fossil mineral resources via multi-criteria decision analysis," Resources Policy, Elsevier, vol. 58(C), pages 150-158.
    17. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    18. Olhager, Jan, 2003. "Strategic positioning of the order penetration point," International Journal of Production Economics, Elsevier, vol. 85(3), pages 319-329, September.
    19. Hatayama, Hiroki & Tahara, Kiyotaka, 2018. "Adopting an objective approach to criticality assessment: Learning from the past," Resources Policy, Elsevier, vol. 55(C), pages 96-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Helbig & Alex M. Bradshaw & Andrea Thorenz & Axel Tuma, 2020. "Supply Risk Considerations for the Elements in Nickel-Based Superalloys," Resources, MDPI, vol. 9(9), pages 1-16, August.
    2. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    3. Victoria E. Huntington & Frédéric Coulon & Stuart T. Wagland, 2022. "Innovative Resource Recovery from Industrial Sites: A Critical Review," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    4. Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    2. Christoph Helbig & Martin Bruckler & Andrea Thorenz & Axel Tuma, 2021. "An Overview of Indicator Choice and Normalization in Raw Material Supply Risk Assessments," Resources, MDPI, vol. 10(8), pages 1-26, August.
    3. Shule Li & Jingjing Yan & Qiuming Pei & Jinghua Sha & Siyu Mou & Yong Xiao, 2019. "Risk Identification and Evaluation of the Long-term Supply of Manganese Mines in China Based on the VW-BGR Method," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    4. Yu, Shiwei & Duan, Haoran & Cheng, Jinhua, 2021. "An evaluation of the supply risk for China's strategic metallic mineral resources," Resources Policy, Elsevier, vol. 70(C).
    5. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    6. Lapko, Yulia & Trucco, Paolo, 2018. "Influence of power regimes on identification and mitigation of material criticality: The case of platinum group metals in the automotive sector," Resources Policy, Elsevier, vol. 59(C), pages 360-370.
    7. Kühnel, Konstantin & Schütte, Philip & Bach, Vanessa & Franken, Gudrun & Finkbeiner, Matthias, 2023. "Correlation analysis of country governance indicators and the magnitude of environmental and social incidents in mining," Resources Policy, Elsevier, vol. 85(PA).
    8. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Zhu, Yongguang & Su, Hui & Xue, Shuangjiao, 2020. "Synthesized indicator for evaluating security of strategic minerals in China: A case study of lithium," Resources Policy, Elsevier, vol. 69(C).
    9. Lapko, Yulia & Trucco, Paolo & Nuur, Cali, 2016. "The business perspective on materials criticality: Evidence from manufacturers," Resources Policy, Elsevier, vol. 50(C), pages 93-107.
    10. Li, Baihua & Li, Huajiao & Ren, Shuai & Liu, Haiping & Wang, Gang, 2023. "Commodity supply risk assessment of China's copper industrial chain: The perspective of trade network," Resources Policy, Elsevier, vol. 81(C).
    11. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    12. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    13. Mitja Mori & Rok Stropnik & Mihael Sekavčnik & Andrej Lotrič, 2021. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    14. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    15. Schnebele, Emily & Jaiswal, Kishor & Luco, Nicolas & Nassar, Nedal T., 2019. "Natural hazards and mineral commodity supply: Quantifying risk of earthquake disruption to South American copper supply," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    16. Wei, Jing & Zhang, Jianjun & Wu, Xia & Song, Zeyu, 2022. "Governance in mining enterprises: An effective way to promote the intensification of resources—Taking coal resources as an example," Resources Policy, Elsevier, vol. 76(C).
    17. Aiman Fadil & Paul Davis & John Geraghty, 2023. "A Mixed-Method Approach to Determine the Successful Factors Affecting the Criticality Level of Intermediate and Final Products on National Basis: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    18. Dewulf, Jo & Blengini, Gian Andrea & Pennington, David & Nuss, Philip & Nassar, Nedal T., 2016. "Criticality on the international scene: Quo vadis?," Resources Policy, Elsevier, vol. 50(C), pages 169-176.
    19. Valérie Mignon & Pauline Bucciarelli & Emmanuel Hache, 2024. "Evaluating criticality of strategic metals: Are the Herfindahl–Hirschman Index and usual concentration thresholds still relevant?," Working Papers hal-04452384, HAL.
    20. Marc Schmid, 2021. "The Revised German Raw Materials Strategy in the Light of Global Political and Market Developments," Review of Policy Research, Policy Studies Organization, vol. 38(1), pages 49-75, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:262-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.