IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v85y2020ics0966692319308117.html
   My bibliography  Save this article

Walking distances from services and destinations for residential aged-care centres in Australian cities

Author

Listed:
  • Amini-Behbahani, Peiman
  • Meng, Li
  • Gu, Ning

Abstract

Aged-care centres are one of the common places used by the older Australian population as their residence. While these centres provide many health supports and assistance for the well-being of the residents, there are still many health benefits for this population by walking in the environment outside the centre, because of the positive effect of walking on health and the opportunities it provides for social interaction. However, to choose walking is dependent on several factors, some of which pertain to the availability of and accessibility to the facilities around the care centres. This paper has approached accessibility as a matter of walking distance to the facilities or services, or to the public transport with potential access to them.

Suggested Citation

  • Amini-Behbahani, Peiman & Meng, Li & Gu, Ning, 2020. "Walking distances from services and destinations for residential aged-care centres in Australian cities," Journal of Transport Geography, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692319308117
    DOI: 10.1016/j.jtrangeo.2020.102707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319308117
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2020.102707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pucher, J. & Buehler, R. & Merom, D. & Bauman, A., 2011. "Walking and cycling in the United States, 2001-2009: Evidence from the National Household Travel Surveys," American Journal of Public Health, American Public Health Association, vol. 101(SUPPL. 1), pages 310-317.
    2. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    3. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    4. Engels, Benno & Liu, Gang-Jun, 2011. "Social exclusion, location and transport disadvantage amongst non-driving seniors in a Melbourne municipality, Australia," Journal of Transport Geography, Elsevier, vol. 19(4), pages 984-996.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    2. Jun Yang & Zhifei Lou & Xinglong Tang & Ying Sun, 2023. "Multi-Source Data-Based Evaluation of Suitability of Land for Elderly Care and Layout Optimization: A Case Study of Changsha, China," Sustainability, MDPI, vol. 15(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric T. H. Chan & Tim Schwanen & David Banister, 2021. "The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: evidence from a rapidly developing city in China," Transportation, Springer, vol. 48(1), pages 431-454, February.
    2. Jina Mahmoudi & Lei Zhang, 2020. "Impact of the Built Environment Measured at Multiple Levels on Nonmotorized Travel Behavior: An Ecological Approach to a Florida Case Study," Sustainability, MDPI, vol. 12(21), pages 1-39, October.
    3. Bojing Liao & Pauline E. W. van den Berg & Pieter J. V. van Wesemael & Theo A. Arentze, 2020. "How Does Walkability Change Behavior? A Comparison between Different Age Groups in the Netherlands," IJERPH, MDPI, vol. 17(2), pages 1-14, January.
    4. Abolfazl Dehghanmongabadi & Åžebnem HoÅŸkara, 2020. "Determinative Variables Toward Promoting Use of Active Modes of Transportation: Enhancing Level of Sustainable Mobility in Communities," SAGE Open, , vol. 10(3), pages 21582440209, September.
    5. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    6. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    7. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    8. Jean Ryan, 2020. "Examining the Process of Modal Choice for Everyday Travel Among Older People," IJERPH, MDPI, vol. 17(3), pages 1-19, January.
    9. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    10. Rui Xiao & Guofeng Wang & Meng Wang, 2018. "Transportation Disadvantage and Neighborhood Sociodemographics: A Composite Indicator Approach to Examining Social Inequalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(1), pages 29-43, May.
    11. Duvarci, Yavuz & Yigitcanlar, Tan & Mizokami, Shoshi, 2015. "Transportation disadvantage impedance indexing: A methodological approach to reduce policy shortcomings," Journal of Transport Geography, Elsevier, vol. 48(C), pages 61-75.
    12. Marquet, Oriol & Miralles-Guasch, Carme, 2015. "Neighbourhood vitality and physical activity among the elderly: The role of walkable environments on active ageing in Barcelona, Spain," Social Science & Medicine, Elsevier, vol. 135(C), pages 24-30.
    13. Rupi, Federico & Freo, Marzia & Poliziani, Cristian & Postorino, Maria Nadia & Schweizer, Joerg, 2023. "Analysis of gender-specific bicycle route choices using revealed preference surveys based on GPS traces," Transport Policy, Elsevier, vol. 133(C), pages 1-14.
    14. O'Driscoll, Conor & Crowley, Frank & Doran, Justin & McCarthy, Nóirín, 2022. "Retail sprawl and CO2 emissions: Retail centres in Irish cities," Journal of Transport Geography, Elsevier, vol. 102(C).
    15. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    16. Luz, Gregório & Barboza, Matheus H.C. & Portugal, Licinio & Giannotti, Mariana & van Wee, Bert, 2022. "Does better accessibility help to reduce social exclusion? Evidence from the city of São Paulo, Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 186-217.
    17. Enayat Mirzaei & Dominique Mignot, 2021. "An Empirical Analysis of Mode Choice Decision for Utilitarian and Hedonic Trips: Evidence from Iran," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    18. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    19. Li, Aoyong & Huang, Yizhe & Axhausen, Kay W., 2020. "An approach to imputing destination activities for inclusion in measures of bicycle accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    20. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:85:y:2020:i:c:s0966692319308117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.