IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v80y2019ics0966692319302455.html
   My bibliography  Save this article

Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results

Author

Listed:
  • Pani, Agnivesh
  • Sahu, Prasanta K.
  • Chandra, Aitichya
  • Sarkar, Ashoke K.

Abstract

There is a growing interest in incorporating spatial indicators into freight demand model systems. The indicators are measured for different areal units (e.g., census tracts or block groups) and are often used as proxy variables or aggregation layers. Model estimation results vary according to the choice of these areal units and an analyst is thus confronted with a popular decision challenge termed as ‘modifiable areal unit problem’ (MAUP). The variability in results due to MAUP arises since areal units can be modified in theoretically infinite ways (in terms of shape, orientation and size) and magnitude of aggregation loss in information will vary for each alternative zoning system. In effect, how well the zonal (aggregated) characteristics can describe the establishment-level (disaggregated) observations is inversely related to MAUP effects. Little is known, however, about the extent of MAUP effects in freight generation (FG) models and freight trip generation (FTG) models. This study diagnoses the implications of MAUP effects in FG and FTG models by designing alternate zoning systems (by means of different zonal variables and clustering techniques) and assessing the sensitivity of model estimation results within a framework of comparative analysis (by means of hierarchical linear models). Study results assess the presence of MAUP as alternate zoning systems resulted in wide variation in the estimated coefficients for zonal characteristics (e.g., industrial area, land value, number of establishments, distance to primary arterial) in terms of magnitude, statistical significance, and even in the direction of association (sign of the coefficient). The implication of this finding is that an analyst may design different or even counterproductive policy instruments based on the way data is aggregated to capture the role of land-use, spatial effects and built-environment in influencing freight travel patterns. MAUP effects are also found to be dependent on the metric in which freight is measured (i.e., FG or FTG) and direction in which flow is measured (i.e., production or attraction). Overall, this research improves the understanding of the parameter sensitivity and performance sensitivity of freight demand model systems to alternative spatial representations of an establishment's relative location. The research findings strongly encourage analysts to acknowledge that the results of freight travel analyses with spatial indicators are sensitive to the definition of areal units.

Suggested Citation

  • Pani, Agnivesh & Sahu, Prasanta K. & Chandra, Aitichya & Sarkar, Ashoke K., 2019. "Assessing the extent of modifiable areal unit problem in modelling freight (trip) generation: Relationship between zone design and model estimation results," Journal of Transport Geography, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:jotrge:v:80:y:2019:i:c:s0966692319302455
    DOI: 10.1016/j.jtrangeo.2019.102524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319302455
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sánchez-Díaz, Iván, 2017. "Modeling urban freight generation: A study of commercial establishments’ freight needs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 3-17.
    2. Cabrera Delgado, Jorge & Bonnel, Patrick, 2016. "Level of aggregation of zoning and temporal transferability of the gravity distribution model: The case of Lyon," Journal of Transport Geography, Elsevier, vol. 51(C), pages 17-26.
    3. Alho, André Romano & de Abreu e Silva, João, 2015. "Utilizing urban form characteristics in urban logistics analysis: a case study in Lisbon, Portugal," Journal of Transport Geography, Elsevier, vol. 42(C), pages 57-71.
    4. David Novak & Christopher Hodgdon & Feng Guo & Lisa Aultman-Hall, 2011. "Nationwide Freight Generation Models: A Spatial Regression Approach," Networks and Spatial Economics, Springer, vol. 11(1), pages 23-41, March.
    5. Wagner, Tina, 2010. "Regional traffic impacts of logistics-related land use," Transport Policy, Elsevier, vol. 17(4), pages 224-229, August.
    6. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2018. "Community mobility MAUP-ing: A socio-spatial investigation of bikeshare demand in Chicago," Journal of Transport Geography, Elsevier, vol. 66(C), pages 80-90.
    7. A S Fotheringham & D W S Wong, 1991. "The Modifiable Areal Unit Problem in Multivariate Statistical Analysis," Environment and Planning A, , vol. 23(7), pages 1025-1044, July.
    8. Stafford, Mai & Duke-Williams, Oliver & Shelton, Nicola, 2008. "Small area inequalities in health: Are we underestimating them?," Social Science & Medicine, Elsevier, vol. 67(6), pages 891-899, September.
    9. Ortega, Emilio & López, Elena & Monzón, Andrés, 2014. "Territorial cohesion impacts of high-speed rail under different zoning systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 16-24.
    10. Pani, Agnivesh & Sahu, Prasanta K., 2019. "Planning, designing and conducting establishment-based freight surveys: A synthesis of the literature, case-study examples and recommendations for best practices in future surveys," Transport Policy, Elsevier, vol. 78(C), pages 58-75.
    11. Shuwei Wang & Lishan Sun & Jian Rong & Zifan Yang, 2014. "Transit Traffic Analysis Zone Delineating Method Based on Thiessen Polygon," Sustainability, MDPI, vol. 6(4), pages 1-12, April.
    12. Gonzalez-Feliu, Jesus & Sánchez-Díaz, Iván, 2019. "The influence of aggregation level and category construction on estimation quality for freight trip generation models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 134-148.
    13. S Openshaw, 1977. "Optimal Zoning Systems for Spatial Interaction Models," Environment and Planning A, , vol. 9(2), pages 169-184, February.
    14. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    15. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.
    16. Stępniak, Marcin & Jacobs-Crisioni, Chris, 2017. "Reducing the uncertainty induced by spatial aggregation in accessibility and spatial interaction applications," Journal of Transport Geography, Elsevier, vol. 61(C), pages 17-29.
    17. José Manuel Viegas & L Miguel Martinez & Elisabete A Silva, 2009. "Effects of the Modifiable Areal Unit Problem on the Delineation of Traffic Analysis Zones," Environment and Planning B, , vol. 36(4), pages 625-643, August.
    18. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    19. Pani, Agnivesh & Sahu, Prasanta K. & Patil, Gopal R. & Sarkar, Ashoke K., 2018. "Modelling urban freight generation: A case study of seven cities in Kerala, India," Transport Policy, Elsevier, vol. 69(C), pages 49-64.
    20. Garrido, Rodrigo A. & Mahmassani, Hani S., 2000. "Forecasting freight transportation demand with the space-time multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 403-418, June.
    21. Mitra, Raktim & Buliung, Ron N., 2012. "Built environment correlates of active school transportation: neighborhood and the modifiable areal unit problem," Journal of Transport Geography, Elsevier, vol. 20(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balla, Bhavani Shankar & Sahu, Prasanta K., 2023. "Assessing regional transferability and updating of freight generation models to reduce sample size requirements in national freight data collection program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Ramirez-Rios, Diana G. & Kalahasthi, Lokesh Kumar & Holguín-Veras, José, 2023. "On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    4. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    5. Holguín-Veras, José & Ramirez-Rios, Diana & Pérez-Guzmán, Sofía, 2021. "Time-dependent patterns in freight trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 423-444.
    6. Demostenis Ramos Cassiano & Bruno Vieira Bertoncini & Leise Kelli de Oliveira, 2021. "A Conceptual Model Based on the Activity System and Transportation System for Sustainable Urban Freight Transport," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    7. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    8. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    9. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    10. Pani, Agnivesh & Sahu, Prasanta K., 2022. "Modelling non-response in establishment-based freight surveys: A sampling tool for statewide freight data collection in middle-income countries," Transport Policy, Elsevier, vol. 124(C), pages 128-138.
    11. Leise Kelli de Oliveira & Gracielle Gonçalves Ferreira de Araújo & Bruno Vieira Bertoncini & Carlos David Pedrosa & Francisco Gildemir Ferreira da Silva, 2022. "Modelling Freight Trip Generation Based on Deliveries for Brazilian Municipalities," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    12. Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    4. Pani, Agnivesh & Sahu, Prasanta K. & Tavasszy, Lóránt & Mishra, Sabya, 2023. "Freight activity-travel pattern generation (FAPG) as an enhancement of freight (trip) generation modelling: Methodology and case study," Transport Policy, Elsevier, vol. 144(C), pages 34-48.
    5. Agnivesh Pani & Prasanta K. Sahu & Furqan A. Bhat, 2021. "Assessing the Spatial Transferability of Freight (Trip) Generation Models across and within States of India: Empirical Evidence and Implications for Benefit Transfer," Networks and Spatial Economics, Springer, vol. 21(2), pages 465-493, June.
    6. Dhulipala, Sowjanya & Patil, Gopal R., 2020. "Freight production of agricultural commodities in India using multiple linear regression and generalized additive modelling," Transport Policy, Elsevier, vol. 97(C), pages 245-258.
    7. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    8. Mounisai Siddartha Middela & Gitakrishnan Ramadurai, 2021. "Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation," Transportation, Springer, vol. 48(5), pages 2335-2356, October.
    9. Holguín-Veras, José & Ramirez-Rios, Diana & Pérez-Guzmán, Sofía, 2021. "Time-dependent patterns in freight trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 423-444.
    10. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. Sanchez-Diaz, Ivan, 2020. "Assessing the magnitude of freight traffic generated by office deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 279-289.
    12. Krisztin, Tamás, 2018. "Semi-parametric spatial autoregressive models in freight generation modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 121-143.
    13. Pani, Agnivesh & Sahu, Prasanta K., 2022. "Modelling non-response in establishment-based freight surveys: A sampling tool for statewide freight data collection in middle-income countries," Transport Policy, Elsevier, vol. 124(C), pages 128-138.
    14. Sowjanya Dhulipala & Gopal R. Patil, 2023. "Regional freight generation and spatial interactions in developing regions using secondary data," Transportation, Springer, vol. 50(3), pages 773-810, June.
    15. Gonzalez-Calderon, Carlos A. & Moreno-Palacio, Diana Patricia & Posada-Henao, John Jairo & Quintero-Giraldo, Ricardo & Múnera, César Chavarría, 2022. "Service trip generation modeling in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    16. Pani, Agnivesh & Sahu, Prasanta K. & Patil, Gopal R. & Sarkar, Ashoke K., 2018. "Modelling urban freight generation: A case study of seven cities in Kerala, India," Transport Policy, Elsevier, vol. 69(C), pages 49-64.
    17. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    18. Iván Sánchez-Díaz & José Holguín-Veras & Xiaokun Wang, 2016. "An exploratory analysis of spatial effects on freight trip attraction," Transportation, Springer, vol. 43(1), pages 177-196, January.
    19. Oliveira, Leise Kelli de & Lopes, Gabriela Pereira & Oliveira, Renata Lúcia Magalhães de & Bracarense, Lílian dos Santos Fontes Pereira & Pitombo, Cira Souza, 2022. "An investigation of contributing factors for warehouse location and the relationship between local attributes and explanatory variables of Warehouse Freight Trip Generation Model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 206-219.
    20. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:80:y:2019:i:c:s0966692319302455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.