IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v100y2022ics0966692322000308.html
   My bibliography  Save this article

Ride-pooling demand prediction: A spatiotemporal assessment in Germany

Author

Listed:
  • Zwick, Felix
  • Axhausen, Kay W.

Abstract

Ride-pooling has attracted considerable attention from both academia and practitioners in recent years, promising to reduce traffic volumes and its negative impacts in urban areas. Simulation studies have shown that large-scale ride-pooling has the potential to increase vehicle utilization, thereby reducing vehicle kilometers traveled (VKT) and required fleet sizes compared to single-passenger mobility options. However, in the real world, large-scale ride-pooling services are rare and not yet widely implemented, in part due to high operating costs that are expected to decrease substantially with the advent of automated vehicles.

Suggested Citation

  • Zwick, Felix & Axhausen, Kay W., 2022. "Ride-pooling demand prediction: A spatiotemporal assessment in Germany," Journal of Transport Geography, Elsevier, vol. 100(C).
  • Handle: RePEc:eee:jotrge:v:100:y:2022:i:c:s0966692322000308
    DOI: 10.1016/j.jtrangeo.2022.103307
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322000308
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Ke, Jintao & Yang, Hai & Zheng, Zhengfei, 2020. "On ride-pooling and traffic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 213-231.
    3. Wang, Sicheng & Noland, Robert B., 2021. "What is the elasticity of sharing a ridesourcing trip?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 284-305.
    4. Nadine Kostorz & Eva Fraedrich & Martin Kagerbauer, 2021. "Usage and User Characteristics—Insights from MOIA, Europe’s Largest Ridepooling Service," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    5. Xiaowei Chen & Hongyu Zheng & Ze Wang & Xiqun Chen, 2021. "Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires," Transportation, Springer, vol. 48(4), pages 1541-1561, August.
    6. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    7. Anne Brown, 2019. "Redefining Car Access," Journal of the American Planning Association, Taylor & Francis Journals, vol. 85(2), pages 83-95, April.
    8. Guidon, Sergio & Reck, Daniel J. & Axhausen, Kay, 2020. "Expanding a(n) (electric) bicycle-sharing system to a new city: Prediction of demand with spatial regression and random forests," Journal of Transport Geography, Elsevier, vol. 84(C).
    9. de Souza Silva, Laize Andréa & de Andrade, Maurício Oliveira & Alves Maia, Maria Leonor, 2018. "How does the ride-hailing systems demand affect individual transport regulation?," Research in Transportation Economics, Elsevier, vol. 69(C), pages 600-606.
    10. Young, Mischa & Allen, Jeff & Farber, Steven, 2020. "Measuring when Uber behaves as a substitute or supplement to transit: An examination of travel-time differences in Toronto," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Cetin, Tamer & Deakin, Elizabeth, 2019. "Regulation of taxis and the rise of ridesharing," Transport Policy, Elsevier, vol. 76(C), pages 149-158.
    12. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    13. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    14. Jeffery B. Greenblatt & Samveg Saxena, 2015. "Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles," Nature Climate Change, Nature, vol. 5(9), pages 860-863, September.
    15. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    16. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    17. David Ennnen & Thorsten Heilker, 2020. "Ride-Hailing Services in Germany: Potential Impacts on Public Transport, Motorized Traffic, and Social Welfare," Working Papers 29, Institute of Transport Economics, University of Muenster.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imhof, Sebastian & Blättler, Kevin, 2023. "Assessing spatial characteristics to predict DRT demand in rural Switzerland," Research in Transportation Economics, Elsevier, vol. 99(C).
    2. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gödde, Jan & Ruhrort, Lisa & Allert, Viktoria & Scheiner, Joachim, 2023. "User characteristics and spatial correlates of ride-pooling demand – Evidence from Berlin and Munich," Journal of Transport Geography, Elsevier, vol. 109(C).
    2. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    3. Liang, Yuan & Yu, Bingjie & Zhang, Xiaojian & Lu, Yi & Yang, Linchuan, 2023. "The short-term impact of congestion taxes on ridesourcing demand and traffic congestion: Evidence from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    4. Loa, Patrick & Ong, Felita & Hawkins, Jason & Nurul Habib, Khandker, 2023. "Unravelling the relationship between ride-sourcing services and conventional modes in the city of Toronto: A stated preference study," Transport Policy, Elsevier, vol. 141(C), pages 209-220.
    5. Zou, Zhenpeng & Cirillo, Cinzia, 2021. "Does ridesourcing impact driving decisions: A survey weighted regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 1-12.
    6. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    8. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Li, Shengxiao(Alex) & Zhai, Wei & Jiao, Junfeng & Wang, Chao (Kenneth), 2022. "Who loses and who wins in the ride-hailing era? A case study of Austin, Texas," Transport Policy, Elsevier, vol. 120(C), pages 130-138.
    10. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2020. "Using machine learning for direct demand modeling of ridesourcing services in Chicago," Journal of Transport Geography, Elsevier, vol. 83(C).
    12. Qiao, Si & Yeh, Anthony Gar-On, 2021. "Is ride-hailing a valuable means of transport in newly developed areas under TOD-oriented urbanization in China? Evidence from Chengdu City," Journal of Transport Geography, Elsevier, vol. 96(C).
    13. Jason Soria & Shelly Etzioni & Yoram Shiftan & Amanda Stathopoulos & Eran Ben-Elia, 2022. "Microtransit adoption in the wake of the COVID-19 pandemic: evidence from a choice experiment with transit and car commuters," Papers 2204.01974, arXiv.org.
    14. Ngo, Nicole S. & Götschi, Thomas & Clark, Benjamin Y., 2021. "The effects of ride-hailing services on bus ridership in a medium-sized urban area using micro-level data: Evidence from the Lane Transit District," Transport Policy, Elsevier, vol. 105(C), pages 44-53.
    15. Fan Zeng & Chris Kwan Yu Lo & Stacy Hyun Nam Lee, 2021. "Will Communication of Job Creation Facilitate Diffusion of Innovations in the Automobile Industry?," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
    16. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. Abdul Rais Abdul Latiff & Saidatulakmal Mohd, 2023. "Transport, Mobility and the Wellbeing of Older Adults: An Exploration of Private Chauffeuring and Companionship Services in Malaysia," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    18. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    19. Rezwana Rafiq & Michael G. McNally, 2023. "An exploratory analysis of alternative travel behaviors of ride-hailing users," Transportation, Springer, vol. 50(2), pages 571-605, April.
    20. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:100:y:2022:i:c:s0966692322000308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.