IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v8y1980i6p623-629.html
   My bibliography  Save this article

Optimizing multi-stage production with constant lot size and varying numbers of batches

Author

Listed:
  • Szendrovits, Andrew Z
  • Drezner, ZVI

Abstract

The model presented in this paper assumes that a uniform lot size is produced through a series of manufacturing stages, with a single set-up and without interruption at each stage. Transportation of partial lots, called batches, is allowed between stages after the whole batch is completed. The batch sizes must be equal at any particular stage, but the optimal number of equal-sized batches may differ across stages. Of course, the set-up costs, the inventory-holding costs and the transportation costs influence both the optimal batch-sizes at the various stages and the uniform lot size. An optimization method for this deterministic model is developed and is illustrated by an example.

Suggested Citation

  • Szendrovits, Andrew Z & Drezner, ZVI, 1980. "Optimizing multi-stage production with constant lot size and varying numbers of batches," Omega, Elsevier, vol. 8(6), pages 623-629.
  • Handle: RePEc:eee:jomega:v:8:y:1980:i:6:p:623-629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0305-0483(80)90003-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoque, M. A. & Kingsman, B. G., 1995. "An optimal solution algorithm for the constant lot-size model with equal and unequal sized batch shipments for the single product multi-stage production system," International Journal of Production Economics, Elsevier, vol. 42(2), pages 161-174, December.
    2. Hoai Le Thi & Duc Tran, 2014. "Optimizing a multi-stage production/inventory system by DC programming based approaches," Computational Optimization and Applications, Springer, vol. 57(2), pages 441-468, March.
    3. Wen-Tsung Ho & Shu-Fang Lai & Yun-Kuei Huang, 2014. "An Optimal Mixed Batch Shipment Policy for Multiple Items in a Single-Supplier Multiple-Retailer Integrated System," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 636-658, February.
    4. Jaber, Mohamad Y. & Khan, Mehmood, 2010. "Managing yield by lot splitting in a serial production line with learning, rework and scrap," International Journal of Production Economics, Elsevier, vol. 124(1), pages 32-39, March.
    5. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    6. Hoque, M.A. & Kingsman, B.G., 2006. "Synchronization in common cycle lot size scheduling for a multi-product serial supply chain," International Journal of Production Economics, Elsevier, vol. 103(1), pages 316-331, September.
    7. Wen-Tsung Ho & Jason Chao-Hsien Pan & Yu-Cheng Hsiao, 2012. "Optimizing Multi-stage Production for an Assembly-Type Supply Chain with Unequal Sized Batch Shipments," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 513-531, May.
    8. Wen-Tsung Ho & Yu-Cheng Hsiao, 2014. "Optimal Mixed Batch Shipment Policy with Variable Safety Factor for the Single-Vendor Single-Buyer Production-Inventory System," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 648-663, May.
    9. Bogaschewsky, Ronald W. & Buscher, Udo D. & Lindner, Gerd, 2001. "Optimizing multi-stage production with constant lot size and varying number of unequal sized batches," Omega, Elsevier, vol. 29(2), pages 183-191, April.
    10. Kim, DaeSoo, 1999. "Optimal two-stage lot sizing and inventory batching policies," International Journal of Production Economics, Elsevier, vol. 58(3), pages 221-234, January.
    11. Hoque, M.A., 2011. "An optimal solution technique to the single-vendor multi-buyer integrated inventory supply chain by incorporating some realistic factors," European Journal of Operational Research, Elsevier, vol. 215(1), pages 80-88, November.
    12. Hsiao, Yu-Cheng, 2008. "Integrated logistic and inventory model for a two-stage supply chain controlled by the reorder and shipping points with sharing information," International Journal of Production Economics, Elsevier, vol. 115(1), pages 229-235, September.
    13. Hsiao, Yu-Cheng & Lin, Yi & Huang, Yun-Kuei, 2010. "Optimal multi-stage logistic and inventory policies with production bottleneck in a serial supply chain," International Journal of Production Economics, Elsevier, vol. 124(2), pages 408-413, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:8:y:1980:i:6:p:623-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.