IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v104y2021ics0305048321000645.html
   My bibliography  Save this article

An almost robust optimization model for integrated berth allocation and quay crane assignment problem

Author

Listed:
  • Xiang, Xi
  • Liu, Changchun

Abstract

The integrated berth allocation and quay crane assignment problem is an important issue for the operations management in container terminals. This issue primarily considers the assignment of berthing time, position, and the number of quay cranes in each time segment to ships that must be discharged and loaded at terminals. This study examines such a problem by considering uncertainties in the late arrival of ships and inflation of container quantity. Based on historical data, we first divide the uncertainty set into K non-overlapping full-dimensional clusters via K-means clustering, and the weight of each cluster is calculated. Then, we formulate an almost robust model by introducing the weighted max penalty function with the objective of minimizing the total cost, which is caused by the deviations from the expected berthing location and departure time. The concept of robustness index is introduced to investigate the trade-off between the changes in the objective value and the penalty violation. A decomposition method, which contains a deterministic master problem and a stochastic subproblem, is proposed to solve the problem. In each iteration, the subproblem checks the master problem under different realizations, adds scenarios, and cuts into the master problem if needed. Numerical experiments demonstrate that (i) the proposed method can solve the model efficiently, (ii) the robustness index shows that a significant improvement in objective can be achieved at the expense of a small amount of penalty, (iii) the proposed model can handle uncertainties better than the deterministic, fully robust, and worst-case models in terms of total expected cost, total vessel delays, and utilization rates of the berth and quay crane, and (iv) the proposed method becomes more attractive compared with the first come first served approach as the congestion situation or uncertainty degree increase.

Suggested Citation

  • Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
  • Handle: RePEc:eee:jomega:v:104:y:2021:i:c:s0305048321000645
    DOI: 10.1016/j.omega.2021.102455
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321000645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canrong Zhang & Tao Wu & Mingyao Qi & Lixin Miao, 2018. "Simultaneous Allocation of Berths and Quay Cranes under Discrete Berth Situation," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-28, June.
    2. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    3. Kuzmicz, Katarzyna Anna & Pesch, Erwin, 2019. "Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation," Omega, Elsevier, vol. 85(C), pages 194-213.
    4. Feng Li & Jiuh-Biing Sheu & Zi-You Gao, 2015. "Solving the Continuous Berth Allocation and Specific Quay Crane Assignment Problems with Quay Crane Coverage Range," Transportation Science, INFORMS, vol. 49(4), pages 968-989, November.
    5. Soyster, A.L. & Murphy, F.H., 2017. "Data driven matrix uncertainty for robust linear programming," Omega, Elsevier, vol. 70(C), pages 43-57.
    6. Correcher, Juan F. & Alvarez-Valdes, Ramon & Tamarit, Jose M., 2019. "New exact methods for the time-invariant berth allocation and quay crane assignment problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 80-92.
    7. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    8. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    9. M. Rodriguez-Molins & M. A. Salido & F. Barber, 2014. "Robust Scheduling for Berth Allocation and Quay Crane Assignment Problem," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-17, December.
    10. Imai, Akio & Chen, Hsieh Chia & Nishimura, Etsuko & Papadimitriou, Stratos, 2008. "The simultaneous berth and quay crane allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 900-920, September.
    11. Angelos Georghiou & Angelos Tsoukalas & Wolfram Wiesemann, 2020. "A Primal–Dual Lifting Scheme for Two-Stage Robust Optimization," Operations Research, INFORMS, vol. 68(2), pages 572-590, March.
    12. Dimitris Bertsimas & Iain Dunning, 2016. "Multistage Robust Mixed-Integer Optimization with Adaptive Partitions," Operations Research, INFORMS, vol. 64(4), pages 980-998, August.
    13. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2016. "Optimal berth allocation, time-variant quay crane assignment and scheduling with crane setups in container terminals," European Journal of Operational Research, Elsevier, vol. 254(3), pages 985-1001.
    14. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    15. Haobin Li & Chenhao Zhou & Byung Kwon Lee & Loo Hay Lee & Ek Peng Chew & Rick Siow Mong Goh, 2017. "Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization," IISE Transactions, Taylor & Francis Journals, vol. 49(9), pages 849-862, September.
    16. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    17. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    18. Iris, Çağatay & Pacino, Dario & Ropke, Stefan & Larsen, Allan, 2015. "Integrated Berth Allocation and Quay Crane Assignment Problem: Set partitioning models and computational results," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 75-97.
    19. Lim, Sungmook, 2013. "A joint optimal pricing and order quantity model under parameter uncertainty and its practical implementation," Omega, Elsevier, vol. 41(6), pages 998-1007.
    20. Xi, Xiang & Changchun, Liu & Yuan, Wang & Loo Hay, Lee, 2020. "Two-stage conflict robust optimization models for cross-dock truck scheduling problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    21. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    22. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    23. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    24. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    25. Giallombardo, Giovanni & Moccia, Luigi & Salani, Matteo & Vacca, Ilaria, 2010. "Modeling and solving the Tactical Berth Allocation Problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 232-245, February.
    26. Liu, Changchun, 2019. "A note on tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 278(1), pages 363-364.
    27. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    28. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    29. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2014. "Optimal berth allocation and time-invariant quay crane assignment in container terminals," European Journal of Operational Research, Elsevier, vol. 235(1), pages 88-101.
    30. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    31. Meisel, Frank & Bierwirth, Christian, 2009. "Heuristics for the integration of crane productivity in the berth allocation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 196-209, January.
    32. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
    33. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    34. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    35. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    36. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    37. Shang, Xiao Ting & Cao, Jin Xin & Ren, Jie, 2016. "A robust optimization approach to the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 44-65.
    38. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    39. Han, Xiao-le & Lu, Zhi-qiang & Xi, Li-feng, 2010. "A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1327-1340, December.
    40. Chang, Daofang & Jiang, Zuhua & Yan, Wei & He, Junliang, 2010. "Integrating berth allocation and quay crane assignments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 975-990, November.
    41. Mattia, Sara & Rossi, Fabrizio & Servilio, Mara & Smriglio, Stefano, 2017. "Staffing and scheduling flexible call centers by two-stage robust optimization," Omega, Elsevier, vol. 72(C), pages 25-37.
    42. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    43. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    44. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
    45. Baron, Opher & Berman, Oded & Fazel-Zarandi, Mohammad M. & Roshanaei, Vahid, 2019. "Almost Robust Discrete Optimization," European Journal of Operational Research, Elsevier, vol. 276(2), pages 451-465.
    46. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    47. Hanks, Robert W. & Lunday, Brian J. & Weir, Jeffery D., 2020. "Robust goal programming for multi-objective optimization of data-driven problems: A use case for the United States transportation command's liner rate setting problem," Omega, Elsevier, vol. 90(C).
    48. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    49. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    50. Ilaria Vacca & Matteo Salani & Michel Bierlaire, 2013. "An Exact Algorithm for the Integrated Planning of Berth Allocation and Quay Crane Assignment," Transportation Science, INFORMS, vol. 47(2), pages 148-161, May.
    51. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Zhen & Wang, Wenyuan & Jiang, Ying & Xu, Xinglu & Xu, Yunzhuo & Guo, Zijian, 2022. "Joint berth allocation and ship loader scheduling under the rotary loading mode in coal export terminals," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 229-260.
    2. Jaap-Jan Steeg & Menno Oudshoorn & Neil Yorke-Smith, 2023. "Berth planning and real-time disruption recovery: a simulation study for a tidal port," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 70-110, March.
    3. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    4. Xufeng Tang & Chang Liu & Xinqi Li & Ying Ji, 2023. "Distributionally Robust Programming of Berth-Allocation-with-Crane-Allocation Problem with Uncertain Quay-Crane-Handling Efficiency," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    5. Tufano, Alessandro & Zuidwijk, Rob & Van Dalen, Jan, 2023. "The development of data-driven logistic platforms for barge transportation network under incomplete data," Omega, Elsevier, vol. 114(C).
    6. Shaojian Qu & Xinqi Li & Chang Liu & Xufeng Tang & Zhisheng Peng & Ying Ji, 2023. "Two-Stage Robust Programming Modeling for Continuous Berth Allocation with Uncertain Vessel Arrival Time," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    7. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    8. Agra, Agostinho & Rodrigues, Filipe, 2022. "Distributionally robust optimization for the berth allocation problem under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 1-24.
    9. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    10. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).
    11. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    2. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    3. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    5. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
    6. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
    7. Xufeng Tang & Chang Liu & Xinqi Li & Ying Ji, 2023. "Distributionally Robust Programming of Berth-Allocation-with-Crane-Allocation Problem with Uncertain Quay-Crane-Handling Efficiency," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    8. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    10. Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
    11. Sung Won Cho & Hyun Ji Park & Chulung Lee, 2021. "An integrated method for berth allocation and quay crane assignment to allow for reassignment of vessels to other terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 123-153, March.
    12. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    13. Iris, Çağatay & Pacino, Dario & Ropke, Stefan, 2017. "Improved formulations and an Adaptive Large Neighborhood Search heuristic for the integrated berth allocation and quay crane assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 123-147.
    14. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    15. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    16. Fanrui Xie & Tao Wu & Canrong Zhang, 2019. "A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem," Transportation Science, INFORMS, vol. 53(5), pages 1427-1454, September.
    17. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    18. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    19. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    20. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:104:y:2021:i:c:s0305048321000645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.