IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v102y2021ics0305048320306873.html
   My bibliography  Save this article

Fairness models for multi-agent kidney exchange programmes

Author

Listed:
  • Klimentova, Xenia
  • Viana, Ana
  • Pedroso, João Pedro
  • Santos, Nicolau

Abstract

Nowadays there are several countries running independent kidney exchange programmes (KEPs). These programmes allow a patient with kidney failure, having a willing healthy but incompatible donor, to receive a transplant from a similar pair where the donor is compatible with him. Since in general larger patient-donor pools allow for more patients to be matched, this prompts independent programmes (agents) to merge their pools and collaborate in order to increase the overall number of transplants. Such collaboration does however raise a problem: how to assign transplants to agents so that there is a balance between the contribution each agent brings to the merged pool and the benefit it gets from the collaboration.

Suggested Citation

  • Klimentova, Xenia & Viana, Ana & Pedroso, João Pedro & Santos, Nicolau, 2021. "Fairness models for multi-agent kidney exchange programmes," Omega, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320306873
    DOI: 10.1016/j.omega.2020.102333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048320306873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2020.102333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikhil Agarwal & Itai Ashlagi & Eduardo Azevedo & Clayton R. Featherstone & Ömer Karaduman, 2019. "Market Failure in Kidney Exchange," American Economic Review, American Economic Association, vol. 109(11), pages 4026-4070, November.
    2. Ashlagi, Itai & Fischer, Felix & Kash, Ian A. & Procaccia, Ariel D., 2015. "Mix and match: A strategyproof mechanism for multi-hospital kidney exchange," Games and Economic Behavior, Elsevier, vol. 91(C), pages 284-296.
    3. , & , E., 2014. "Free riding and participation in large scale, multi-hospital kidney exchange," Theoretical Economics, Econometric Society, vol. 9(3), September.
    4. Constantino, Miguel & Klimentova, Xenia & Viana, Ana & Rais, Abdur, 2013. "New insights on integer-programming models for the kidney exchange problem," European Journal of Operational Research, Elsevier, vol. 231(1), pages 57-68.
    5. Vicky Mak-Hau, 2017. "On the kidney exchange problem: cardinality constrained cycle and chain problems on directed graphs: a survey of integer programming approaches," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 35-59, January.
    6. Tayfun Sönmez & Alvin E. Roth & M. Utku Ünver, 2007. "Efficient Kidney Exchange: Coincidence of Wants in Markets with Compatibility-Based Preferences," American Economic Review, American Economic Association, vol. 97(3), pages 828-851, June.
    7. Itai Ashlagi & Alvin E. Roth, 2011. "Individual Rationality and Participation in Large Scale, Multi-Hospital Kidney Exchange," NBER Working Papers 16720, National Bureau of Economic Research, Inc.
    8. Itai Ashlagi & Alvin E. Roth, 2012. "New Challenges in Multihospital Kidney Exchange," American Economic Review, American Economic Association, vol. 102(3), pages 354-359, May.
    9. Kristiaan M. Glorie & J. Joris van de Klundert & Albert P. M. Wagelmans, 2014. "Kidney Exchange with Long Chains: An Efficient Pricing Algorithm for Clearing Barter Exchanges with Branch-and-Price," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 498-512, October.
    10. Nicolau Santos & Paolo Tubertini & Ana Viana & João Pedro Pedroso, 2017. "Kidney exchange simulation and optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1521-1532, December.
    11. Rees, Michael Kenneth & Kopke, Jonathan E. & Pelletier, Ronald P. & Segev, Dorry L. & Rutter, Matthew E. & Fabrega, Alfredo J. & Rogers, Jeffrey David & Pankewycz, Oleh G. & Hiller, Janet & Roth, Alvi, 2009. "A Nonsimultaneous, Extended, Altruistic-Donor Chain," Scholarly Articles 29408291, Harvard University Department of Economics.
    12. Toulis, Panos & Parkes, David C., 2015. "Design and analysis of multi-hospital kidney exchange mechanisms using random graphs," Games and Economic Behavior, Elsevier, vol. 91(C), pages 360-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klimentova, Xenia & Biró, Péter & Viana, Ana & Costa, Virginia & Pedroso, João Pedro, 2023. "Novel integer programming models for the stable kidney exchange problem," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1391-1407.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.
    2. Radu-Stefan Mincu & Péter Biró & Márton Gyetvai & Alexandru Popa & Utkarsh Verma, 2021. "IP solutions for international kidney exchange programmes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 403-423, June.
    3. Klimentova, Xenia & Biró, Péter & Viana, Ana & Costa, Virginia & Pedroso, João Pedro, 2023. "Novel integer programming models for the stable kidney exchange problem," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1391-1407.
    4. John P. Dickerson & Ariel D. Procaccia & Tuomas Sandholm, 2019. "Failure-Aware Kidney Exchange," Management Science, INFORMS, vol. 65(4), pages 1768-1791, April.
    5. Itai Ashlagi & Alvin E. Roth, 2021. "Kidney Exchange: An Operations Perspective," Management Science, INFORMS, vol. 67(9), pages 5455-5478, September.
    6. Tayfun Sönmez & M Utku Ünver, 2017. "Market design for living-donor organ exchanges: an economic policy perspective," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 676-704.
    7. Sönmez, Tayfun & Ünver, M. Utku & Yılmaz, Özgür, 2018. "How (not) to integrate blood subtyping technology to kidney exchange," Journal of Economic Theory, Elsevier, vol. 176(C), pages 193-231.
    8. Itai Ashlagi & Maximilien Burq & Patrick Jaillet & Vahideh Manshadi, 2019. "On Matching and Thickness in Heterogeneous Dynamic Markets," Operations Research, INFORMS, vol. 67(4), pages 927-949, July.
    9. Nicolò, Antonio & Rodríguez-Álvarez, Carmelo, 2017. "Age-based preferences in paired kidney exchange," Games and Economic Behavior, Elsevier, vol. 102(C), pages 508-524.
    10. Mehdi Zeynivand & Mehdi Najafi & Mohammad Modarres Yazdi, 2023. "A Recourse Policy to Improve Number of Successful Transplants in Uncertain Kidney Exchange Programs," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 476-507, May.
    11. Tiago Monteiro & Xenia Klimentova & João Pedro Pedroso & Ana Viana, 2021. "A comparison of matching algorithms for kidney exchange programs addressing waiting time," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 539-552, June.
    12. Glorie, K.M. & Wagelmans, A.P.M. & van de Klundert, J.J., 2012. "Iterative branch-and-price for hierarchical multi-criteria kidney exchange," Econometric Institute Research Papers EI 2012-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Péter Biró & Flip Klijn & Xenia Klimentova & Ana Viana, 2021. "Shapley-Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange," Working Papers 1235, Barcelona School of Economics.
    14. Rajnish Kunar & Kriti Manocha & Josue Ortega, 2020. "On the integration of Shapley-Scarf housing markets," Papers 2004.09075, arXiv.org, revised Jan 2022.
    15. Ghanbariamin, Roksana & Chung, Bobby W., 2020. "The effect of the National Kidney Registry on the kidney-exchange market," Journal of Health Economics, Elsevier, vol. 70(C).
    16. Kumar, Rajnish & Manocha, Kriti & Ortega, Josué, 2022. "On the integration of Shapley–Scarf markets," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    17. Filipe Alvelos & Xenia Klimentova & Ana Viana, 2019. "Maximizing the expected number of transplants in kidney exchange programs with branch-and-price," Annals of Operations Research, Springer, vol. 272(1), pages 429-444, January.
    18. Tuan Le & Jon M. Stauffer & Bala Shetty & Chelliah Sriskandarajah, 2023. "An optimization framework for analyzing dual‐donor organ exchange," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 740-761, March.
    19. Toulis, Panos & Parkes, David C., 2015. "Design and analysis of multi-hospital kidney exchange mechanisms using random graphs," Games and Economic Behavior, Elsevier, vol. 91(C), pages 360-382.
    20. Avrim Blum & Paul Golz, 2021. "Incentive-Compatible Kidney Exchange in a Slightly Semi-Random Model," Papers 2106.11387, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:102:y:2021:i:c:s0305048320306873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.