Advanced Search
MyIDEAS: Login

A local breakdown property of robust tests in linear regression

Contents:

Author Info

  • He, Xuming
Registered author(s):

    Abstract

    The breakdown slope, as a useful summary measure of local stability for estimators and test statistics, has been studied recently by He, Simpson, and Protnoy (1990, J. Amer. Statist. Assoc., 85). It is shown here that all regression estimates based on residuals alone in linear models have zero breakdown slopes in contamination neighborhoods, even though they can have breakdown points as high as one-half. The breakdown functions of tests based on the S-estimation are investigated. It is also shown that the Generalized M-estimators can have better local breakdown robustness. One way to obtain regression estimators with desirable local and global breakdown properties is discussed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4CRM963-69/2/8c27724e14191561595935963b48bee0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 38 (1991)
    Issue (Month): 2 (August)
    Pages: 294-305

    as in new window
    Handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:294-305

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Breakdown slope influence function linear regression robust estimation S-estimator test statistic;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
    2. PREMINGER, Arie & FRANCK, Raphael, . "Forecasting exchange rates: a robust regression approach," CORE Discussion Papers RP -1917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Agostinelli, Claudio & Markatou, Marianthi, 1998. "A one-step robust estimator for regression based on the weighted likelihood reweighting scheme," Statistics & Probability Letters, Elsevier, vol. 37(4), pages 341-350, March.
    4. Olive, David J., 2005. "Two simple resistant regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 49(3), pages 809-819, June.
    5. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    6. Ando, Masakazu & Kimura, Miyoshi, 2004. "The maximum asymptotic bias of S-estimates for regression over the neighborhoods defined by certain special capacities," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 407-425, August.
    7. Olive, David J. & Hawkins, Douglas M., 2003. "Robust regression with high coverage," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 259-266, July.
    8. Marc G. Genton & André Lucas, 2000. "Comprehensive Definitions of Breakdown-Points for Independent and Dependent Observations," Tinbergen Institute Discussion Papers 00-040/2, Tinbergen Institute.
    9. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:38:y:1991:i:2:p:294-305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.