IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v124y2014icp281-294.html
   My bibliography  Save this article

A new adjusted maximum likelihood method for the Fay–Herriot small area model

Author

Listed:
  • Yoshimori, Masayo
  • Lahiri, Partha

Abstract

In the context of the Fay–Herriot model, a mixed regression model routinely used to combine information from various sources in small area estimation, certain adjustments to a standard likelihood (e.g., profile, residual, etc.) have been recently proposed in order to produce strictly positive and consistent model variance estimators. These adjustments protect the resulting empirical best linear unbiased prediction (EBLUP) estimator of a small area mean from the possible over-shrinking to the regression estimator. However, in certain cases, the existing adjusted likelihood methods can lead to high biases in the estimation of both model variance and the associated shrinkage factors and can even produce a negative second-order unbiased mean square error (MSE) estimate of an EBLUP. In this paper, we propose a new adjustment factor that rectifies the above-mentioned problems associated with the existing adjusted likelihood methods. In particular, we show that our proposed adjusted residual maximum likelihood and profile maximum likelihood estimators of the model variance and the shrinkage factors enjoy the same higher-order asymptotic bias properties of the corresponding residual maximum likelihood and profile maximum likelihood estimators, respectively. We compare performances of the proposed method with the existing methods using Monte Carlo simulations.

Suggested Citation

  • Yoshimori, Masayo & Lahiri, Partha, 2014. "A new adjusted maximum likelihood method for the Fay–Herriot small area model," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 281-294.
  • Handle: RePEc:eee:jmvana:v:124:y:2014:i:c:p:281-294
    DOI: 10.1016/j.jmva.2013.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    3. Wang, Junyuan & Fuller, Wayne A., 2003. "The Mean Squared Error of Small Area Predictors Constructed With Estimated Area Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 716-723, January.
    4. Li, Huilin & Lahiri, P., 2010. "An adjusted maximum likelihood method for solving small area estimation problems," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 882-892, April.
    5. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2011. "Best Predictive Small Area Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 732-745.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
    2. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    3. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    4. Kreutzmann, Ann-Kristin & Marek, Philipp & Salvati, Nicola & Schmid, Timo, 2019. "Estimating regional wealth in Germany: How different are East and West really?," Discussion Papers 35/2019, Deutsche Bundesbank.
    5. Malay Ghosh, 2020. "Rejoinder," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 59-67, August.
    6. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    7. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    8. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    9. Timo Schmid & Fabian Bruckschen & Nicola Salvati & Till Zbiranski, 2017. "Constructing sociodemographic indicators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1163-1190, October.
    10. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    11. Jan Pablo Burgard & Joscha Krause & Dennis Kreber, 2019. "Regularized Area-level Modelling for Robust Small Area Estimation in the Presence of Unknown Covariate Measurement Errors," Research Papers in Economics 2019-04, University of Trier, Department of Economics.
    12. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    13. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    14. Ghosh Malay, 2020. "Rejoinder," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 59-67, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    2. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    3. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    4. Malay Ghosh, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    5. Berg, Emily & Chandra, Hukum, 2014. "Small area prediction for a unit-level lognormal model," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 159-175.
    6. Ghosh Malay, 2020. "Small area estimation: its evolution in five decades," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 1-22, August.
    7. Rong Zhu & Guohua Zou & Hua Liang & Lixing Zhu, 2016. "Penalized Weighted Least Squares to Small Area Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 736-756, September.
    8. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    9. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    10. Lixia Diao & David D. Smith & Gauri Sankar Datta & Tapabrata Maiti & Jean D. Opsomer, 2014. "Accurate Confidence Interval Estimation of Small Area Parameters Under the Fay–Herriot Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 497-515, June.
    11. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    12. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2015. "Parametric transformed Fay–Herriot model for small area estimation," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 295-311.
    13. Chakraborty Adrijo & Datta Gauri Sankar & Mandal Abhyuday, 2016. "A Two-Component Normal Mixture Alternative to the Fay-Herriot Model," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 67-90, March.
    14. Timo Schmid & Fabian Bruckschen & Nicola Salvati & Till Zbiranski, 2017. "Constructing sociodemographic indicators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1163-1190, October.
    15. Partha Lahiri & Jiraphan Suntornchost, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.
    16. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    17. repec:csb:stintr:v:17:y:2016:i:1:p:67-90 is not listed on IDEAS
    18. Hirose, Masayo Yoshimori, 2017. "Non-area-specific adjustment factor for second-order efficient empirical Bayes confidence interval," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 67-78.
    19. Ralf Münnich & Jan Burgard & Martin Vogt, 2013. "Small Area-Statistik: Methoden und Anwendungen," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 6(3), pages 149-191, March.
    20. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    21. Jiming Jiang & En-Tzu Tang, 2011. "The best EBLUP in the Fay–Herriot model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1123-1140, December.
    22. Lahiri Partha & Suntornchost Jiraphan, 2020. "A general Bayesian approach to meet different inferential goals in poverty research for small areas," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 237-253, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:124:y:2014:i:c:p:281-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.