IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v114y2013icp99-111.html
   My bibliography  Save this article

Extremal dependence of copulas: A tail density approach

Author

Listed:
  • Li, Haijun
  • Wu, Peiling

Abstract

The extremal dependence of a random vector describes the tail behaviors of joint probabilities of the random vector with respect to that of its margins, and has been often studied by using the tail dependence function of its copula. A tail density approach is introduced in this paper to analyze extremal dependence of the copulas that are specified only by densities. The relation between the copula tail densities and regularly varying densities are established, and the tail densities of Archimedean and t copulas are derived explicitly. The tail density approach becomes especially effective for extremal dependence analysis on a vine copula, for which the tail density can be written recursively in the product form of tail densities of bivariate baseline copulas and densities of bivariate linking copulas.

Suggested Citation

  • Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
  • Handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:99-111
    DOI: 10.1016/j.jmva.2012.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1200173X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Alink, Stan & Löwe, Matthias & Wüthrich, Mario V., 2005. "Analysis of the Expected Shortfall of Aggregate Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 25-43, May.
    3. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    4. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    5. Alink, Stan & Lowe, Matthias & V. Wuthrich, Mario, 2004. "Diversification of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 77-95, August.
    6. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    7. Chan, Yin & Li, Haijun, 2008. "Tail dependence for multivariate t -copulas and its monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 763-770, April.
    8. Barbe, Philippe & Fougères, Anne-Laure & Genest, Christian, 2006. "On the Tail Behavior of Sums of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 361-373, November.
    9. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    10. Stan Alink & Matthias Löwe & Mario V. Wüthrich, 2007. "Diversification for general copula dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 446-465, November.
    11. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    12. Claudia Klüppelberg & Gabriel Kuhn & Liang Peng, 2008. "Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 701-718, December.
    13. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    14. de Haan, L. & Resnick, S., 1987. "On regular variation of probability densities," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 83-93.
    15. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    16. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    17. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaworski Piotr, 2017. "On Truncation Invariant Copulas and their Estimation," Dependence Modeling, De Gruyter, vol. 5(1), pages 133-144, January.
    2. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    3. Takaaki Koike & Marius Hofert, 2020. "Modality for Scenario Analysis and Maximum Likelihood Allocation," Papers 2005.02950, arXiv.org, revised Nov 2020.
    4. Lei Hua, 2016. "A Note on Upper Tail Behavior of Liouville Copulas," Risks, MDPI, vol. 4(4), pages 1-10, November.
    5. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    6. Jaworski, Piotr, 2015. "Univariate conditioning of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 89-103.
    7. Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
    8. Jaworski Piotr, 2017. "On Conditional Value at Risk (CoVaR) for tail-dependent copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 1-19, January.
    9. Travkin, A., 2015. "Estimating Pair-Copula Constructions Using Empirical Tail Dependence Functions: an Application to Russian Stock Market," Journal of the New Economic Association, New Economic Association, vol. 25(1), pages 39-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    2. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    3. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    4. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    5. Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
    6. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
    7. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    8. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    9. Hua, Lei & Joe, Harry, 2014. "Strength of tail dependence based on conditional tail expectation," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 143-159.
    10. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    11. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    12. Ferreira, Helena & Ferreira, Marta, 2012. "Tail dependence between order statistics," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 176-192.
    13. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    14. Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
    15. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    16. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    17. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    18. V'eronique Maume-Deschamps & Didier Rulli`ere & Khalil Said, 2017. "Asymptotic multivariate expectiles," Papers 1704.07152, arXiv.org, revised Jan 2018.
    19. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    20. Pavel Krupskii & Harry Joe, 2015. "Tail-weighted measures of dependence," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 614-629, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:114:y:2013:i:c:p:99-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.