IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i4p699-714.html
   My bibliography  Save this article

Principal component geodesics for planar shape spaces

Author

Listed:
  • Huckemann, Stephan
  • Hotz, Thomas

Abstract

In this paper a numerical method to compute principal component geodesics for Kendall's planar shape spaces-which are essentially complex projective spaces-is presented. Underlying is the notion of principal component analysis based on geodesics for non-Euclidean manifolds as proposed in an earlier paper by Huckemann and Ziezold [S. Huckemann, H. Ziezold, Principal component analysis for Riemannian manifolds with an application to triangular shape spaces, Adv. Appl. Prob. (SGSA) 38 (2) (2006) 299-319]. Currently, principal component analysis for shape spaces is done on the basis of a Euclidean approximation. In this paper, using well-studied datasets and numerical simulations, these approximation errors are discussed. Overall, the error distribution is rather dispersed. The numerical findings back the notion that the Euclidean approximation is good for highly concentrated data. For low concentration, however, the error can be strongly notable. This is in particular the case for a small number of landmarks. For highly concentrated data, stronger anisotropicity and a larger number of landmarks may also increase the error.

Suggested Citation

  • Huckemann, Stephan & Hotz, Thomas, 2009. "Principal component geodesics for planar shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 699-714, April.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:4:p:699-714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00183-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hendriks, Harrie & Landsman, Zinoviy, 1998. "Mean Location and Sample Mean Location on Manifolds: Asymptotics, Tests, Confidence Regions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 227-243, November.
    2. Chikuse, Y. & Jupp, P. E., 2004. "A test of uniformity on shape spaces," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 163-176, January.
    3. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Huckemann, 2012. "On the meaning of mean shape: manifold stability, locus and the two sample test," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1227-1259, December.
    2. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    4. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    5. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    6. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    7. Lisa Sakamoto & Hiromi Kajiya-Kanegae & Koji Noshita & Hideki Takanashi & Masaaki Kobayashi & Toru Kudo & Kentaro Yano & Tsuyoshi Tokunaga & Nobuhiro Tsutsumi & Hiroyoshi Iwata, 2019. "Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    8. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    10. John Gower & Garmt Dijksterhuis, 1994. "Multivariate analysis of coffee images: A study in the simultaneous display of multivariate quantitative and qualitative variables for several assessors," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(2), pages 165-184, May.
    11. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    12. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    13. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    14. Crane, M. & Patrangenaru, V., 2011. "Random change on a Lie group and mean glaucomatous projective shape change detection from stereo pair images," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 225-237, February.
    15. Dahl, Tobias & Naes, Tormod, 2006. "A bridge between Tucker-1 and Carroll's generalized canonical analysis," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3086-3098, July.
    16. Young-Jin Kwon & Do-Hyun Kim & Byung-Chang Son & Kyoung-Ho Choi & Sungbok Kwak & Taehong Kim, 2022. "A Work-Related Musculoskeletal Disorders (WMSDs) Risk-Assessment System Using a Single-View Pose Estimation Model," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    17. V Alex Sotola & Cody A Craig & Peter J Pfaff & Jeremy D Maikoetter & Noland H Martin & Timothy H Bonner, 2019. "Effect of preservation on fish morphology over time: Implications for morphological studies," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    18. Thomas W. Davies & Philipp Gunz & Fred Spoor & Zeresenay Alemseged & Agness Gidna & Jean-Jacques Hublin & William H. Kimbel & Ottmar Kullmer & William P. Plummer & Clément Zanolli & Matthew M. Skinner, 2024. "Dental morphology in Homo habilis and its implications for the evolution of early Homo," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Erdem, Seda & Rigby, Dan, 2011. "Using Best Worst Scaling To Investigate Perceptions Of Control & Concern Over Food And Non-Food Risks," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108790, Agricultural Economics Society.
    20. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:4:p:699-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.