Advanced Search
MyIDEAS: Login to save this article or follow this journal

Dual theory of choice with multivariate risks

Contents:

Author Info

  • Galichon, Alfred
  • Henry, Marc

Abstract

We propose a multivariate extension of Yaariʼs dual theory of choice under risk. We show that a decision maker with a preference relation on multidimensional prospects that preserves first order stochastic dominance and satisfies comonotonic independence behaves as if evaluating prospects using a weighted sum of quantiles. Both the notions of quantiles and of comonotonicity are extended to the multivariate framework using optimal transportation maps. Finally, risk averse decision makers are characterized within this framework and their local utility functions are derived. Applications to the measurement of multi-attribute inequality are also discussed.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S002205311100086X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Economic Theory.

Volume (Year): 147 (2012)
Issue (Month): 4 ()
Pages: 1501-1516

as in new window
Handle: RePEc:eee:jetheo:v:147:y:2012:i:4:p:1501-1516

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622869

Related research

Keywords: Risk; Rank dependent utility theory; Multivariate comonotonicity; Optimal transportation; Multi-attribute inequality; Gini evaluation functions;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Thibault Gajdos & John A. Weymark, 2003. "Multidimensional generalized Gini indices," ICER Working Papers - Applied Mathematics Series 16-2003, ICER - International Centre for Economic Research.
  2. David Schmeidler, 1989. "Subjective Probability and Expected Utility without Additivity," Levine's Working Paper Archive 7662, David K. Levine.
  3. Hong, Chew Soo & Karni, Edi & Safra, Zvi, 1987. "Risk aversion in the theory of expected utility with rank dependent probabilities," Journal of Economic Theory, Elsevier, vol. 42(2), pages 370-381, August.
  4. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
  5. Zephyr, 2010. "The city," City, Taylor & Francis Journals, vol. 14(1-2), pages 154-155, February.
  6. Bourguignon, F. & Chakravarty, S.R., 1998. "The Measurement of Multidimensional Poverty," DELTA Working Papers 98-12, DELTA (Ecole normale supérieure).
  7. Tsui Kai-Yuen, 1995. "Multidimensional Generalizations of the Relative and Absolute Inequality Indices: The Atkinson-Kolm-Sen Approach," Journal of Economic Theory, Elsevier, vol. 67(1), pages 251-265, October.
  8. Puccetti, Giovanni & Scarsini, Marco, 2010. "Multivariate comonotonicity," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 291-304, January.
  9. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
  10. Kolm, Serge-Christophe, 1977. "Multidimensional Egalitarianisms," The Quarterly Journal of Economics, MIT Press, vol. 91(1), pages 1-13, February.
  11. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
  12. WEYMARK, John A., . "Generalized Gini inequality indices," CORE Discussion Papers RP -453, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Gajdos, Thibault & Weymark, John A., 2012. "Introduction to inequality and risk," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1313-1330.
  2. Matteo Del Vigna, 2012. "Stochastic dominance for law invariant preferences: The happy story of elliptical distributions," Working Papers - Mathematical Economics 2012-08, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:147:y:2012:i:4:p:1501-1516. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.