IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v34y2014icp70-77.html
   My bibliography  Save this article

Understanding air travellers' trade-offs between connecting flights and surface access characteristics

Author

Listed:
  • Johnson, Daniel
  • Hess, Stephane
  • Matthews, Bryan

Abstract

This paper reports on a study which seeks to improve our understanding of how people choose between different kinds of flight at competing airports, and how their choices are affected by access conditions. In particular, using stated choice data collected in Scotland, it investigates whether improving surface access to regional airports that are in relatively close proximity to one another (Glasgow and Edinburgh) leads people to avoid taking indirect flights from their nearest airport in favour of direct flights from an alternative airport. In line with expectations, our estimation results from Cross-Nested Logit models show strong aversion to connecting flights, resulting in a willingness to either pay higher fares for direct flights or accept non-trivial increases in access time. For the latter, even without the potential new direct rail link between the two airports, current access times are such that a scenario where direct flights were only available at the non-home airport, a substantial share of passengers would choose to travel from the alternative airport.

Suggested Citation

  • Johnson, Daniel & Hess, Stephane & Matthews, Bryan, 2014. "Understanding air travellers' trade-offs between connecting flights and surface access characteristics," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 70-77.
  • Handle: RePEc:eee:jaitra:v:34:y:2014:i:c:p:70-77
    DOI: 10.1016/j.jairtraman.2013.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699713001117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2013.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Pels & Peter Nijkamp & Piet Rietveld, 2001. "Airport and Airline Choice in a Multiple Airport Region: An Empirical Analysis for the San Francisco Bay Area," Regional Studies, Taylor & Francis Journals, vol. 35(1), pages 1-9.
    2. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    3. Ishii, Jun & Jun, Sunyoung & Van Dender, Kurt, 2009. "Air travel choices in multi-airport markets," Journal of Urban Economics, Elsevier, vol. 65(2), pages 216-227, March.
    4. Stephane Hess & John W. Polak, 2006. "Airport, airline and access mode choice in the San Francisco Bay area," Papers in Regional Science, Wiley Blackwell, vol. 85(4), pages 543-567, November.
    5. Drabas, Tomasz & Wu, Cheng-Lung, 2013. "Modelling air carrier choices with a Segment Specific Cross Nested Logit model," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 8-16.
    6. O’Connell, John F. & Williams, George, 2005. "Passengers’ perceptions of low cost airlines and full service carriers: A case study involving Ryanair, Aer Lingus, Air Asia and Malaysia Airlines," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 259-272.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    8. Marco Kouwenhoven, 2008. "The Role of Accessibility in Passengers' Choice of Airports," OECD/ITF Joint Transport Research Centre Discussion Papers 2008/14, OECD Publishing.
    9. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Access to and competition between airports: a case study for the San Francisco Bay area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 71-83, January.
    10. Mason, Keith J., 2001. "Marketing low-cost airline services to business travellers," Journal of Air Transport Management, Elsevier, vol. 7(2), pages 103-109.
    11. Barrett, Sean D., 2004. "How do the demands for airport services differ between full-service carriers and low-cost carriers?," Journal of Air Transport Management, Elsevier, vol. 10(1), pages 33-39.
    12. Hess, Stephane & Polak, John W., 2005. "Mixed logit modelling of airport choice in multi-airport regions," Journal of Air Transport Management, Elsevier, vol. 11(2), pages 59-68.
    13. Furuichi, Masahiko & Koppelman, Frank S., 1994. "An analysis of air travelers' departure airport and destination choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(3), pages 187-195, May.
    14. Hess, Stephane & Polak, John W., 2006. "Exploring the potential for cross-nesting structures in airport-choice analysis: A case-study of the Greater London area," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 63-81, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaidan, Esmat & Abulibdeh, Ammar, 2018. "Modeling ground access mode choice behavior for Hamad International Airport in the 2022 FIFA World Cup city, Doha, Qatar," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 32-45.
    2. Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
    3. Suau-Sanchez, Pere & Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor, 2016. "Measuring the potential for self-connectivity in global air transport markets: Implications for airports and airlines," Journal of Transport Geography, Elsevier, vol. 57(C), pages 70-82.
    4. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    5. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2015. "The impact of low-cost carriers on airport choice in the US: A case study of the Washington–Baltimore region," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 141-157.
    6. Merkert, Rico & Beck, Matthew, 2017. "Value of travel time savings and willingness to pay for regional aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 29-42.
    7. Yang, Chih-Wen & Liao, Pei-Han, 2016. "Modeling the joint choice of access modes and flight routes with parallel structure and random heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 19-31.
    8. Bezerra, George C.L. & Gomes, Carlos F., 2020. "Antecedents and consequences of passenger satisfaction with the airport," Journal of Air Transport Management, Elsevier, vol. 83(C).
    9. Voltes-Dorta, Augusto & Becker, Eliad, 2018. "The potential short-term impact of a Hyperloop service between San Francisco and Los Angeles on airport competition in California," Transport Policy, Elsevier, vol. 71(C), pages 45-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Woohyun & Windle, Robert J. & Dresner, Martin E., 2015. "The impact of low-cost carriers on airport choice in the US: A case study of the Washington–Baltimore region," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 141-157.
    2. Yang, Chih-Wen & Lu, Jin-Long & Hsu, Chun-Yen, 2014. "Modeling joint airport and route choice behavior for international and metropolitan airports," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 89-95.
    3. de Luca, Stefano, 2012. "Modelling airport choice behaviour for direct flights, connecting flights and different travel plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 148-163.
    4. Escobari, Diego, 2017. "Airport, airline and departure time choice and substitution patterns: An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 198-210.
    5. Teixeira, Filipe Marques & Derudder, Ben, 2021. "Spatio-temporal dynamics in airport catchment areas: The case of the New York Multi Airport Region," Journal of Transport Geography, Elsevier, vol. 90(C).
    6. Lieshout, Rogier, 2012. "Measuring the size of an airport’s catchment area," Journal of Transport Geography, Elsevier, vol. 25(C), pages 27-34.
    7. Paliska, Dejan & Drobne, Samo & Borruso, Giuseppe & Gardina, Massimo & Fabjan, Daša, 2016. "Passengers' airport choice and airports' catchment area analysis in cross-border Upper Adriatic multi-airport region," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 143-154.
    8. Hess, Stephane, 2007. "Posterior analysis of random taste coefficients in air travel behaviour modelling," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 203-212.
    9. Evangelinos, Christos & Staub, Nelly & Marcucci, Edoardo & Gatta, Valerio, 2021. "The impact of airport parking fees on the tourist's airport/airline choice behavior," Journal of Air Transport Management, Elsevier, vol. 90(C).
    10. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    11. Guido Perboli & Marco Ghirardi & Luca Gobbato & Francesca Perfetti, 2015. "Flights and Their Economic Impact on the Airport Catchment Area: An Application to the Italian Tourist Market," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1109-1133, March.
    12. Ishii, Jun & Jun, Sunyoung & Van Dender, Kurt, 2009. "Air travel choices in multi-airport markets," Journal of Urban Economics, Elsevier, vol. 65(2), pages 216-227, March.
    13. Choi, Jong Hae & Wang, Kun & Xia, Wenyi & Zhang, Anming, 2019. "Determining factors of air passengers’ transfer airport choice in the Southeast Asia – North America market: Managerial and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 203-216.
    14. Cheung, Tommy King-Yin & Wong, Wai-hung & Zhang, Anming & Wu, Yangming, 2020. "Spatial panel model for examining airport relationships within multi-airport regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 148-163.
    15. Marcucci, Edoardo & Gatta, Valerio, 2012. "Dissecting preference heterogeneity in consumer stated choices," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 331-339.
    16. Koster, Paul & Kroes, Eric & Verhoef, Erik, 2011. "Travel time variability and airport accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1545-1559.
    17. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    18. Loo, Becky P.Y., 2008. "Passengers’ airport choice within multi-airport regions (MARs): some insights from a stated preference survey at Hong Kong International Airport," Journal of Transport Geography, Elsevier, vol. 16(2), pages 117-125.
    19. Yang, Chih-Wen & Wang, Hsiao-Chun, 2017. "A comparison of flight routes in a dual-airport region using overlapping error components and a cross-nested structure in GEV models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 85-95.
    20. Zeigler, Patrick & Pagliari, Romano & Suau-Sanchez, Pere & Malighetti, Paolo & Redondi, Renato, 2017. "Low-cost carrier entry at small European airports: Low-cost carrier effects on network connectivity and self-transfer potential," Journal of Transport Geography, Elsevier, vol. 60(C), pages 68-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:34:y:2014:i:c:p:70-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.