IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v112y2023ics0969699723000996.html
   My bibliography  Save this article

Using multi-criteria performance measurement models to evaluate the financial, operational and environmental sustainability of airlines

Author

Listed:
  • Tanrıverdi, Gökhan
  • Merkert, Rico
  • KaramaÅŸa, ÇaÄŸlar
  • Asker, Veysi

Abstract

Airline sustainability, defined as both decarbonization and long-term financial survival, has become critical especially since the onset of the COVID-19 pandemic. Our paper investigates the multi-dimensional effects of the COVID-19 crisis on airlines’ sustainability performance using data from 56 airlines for the period before, during and early after the pandemic (2017–2021). We develop and use a novel multi-criteria MEREC–CoCoSo/Borda performance measurement model tailored to the airline industry. Our results suggest that while operational results have dominated sustainability weights throughout the period, the financial pillar has gained considerably in importance while the decarbonization criterion decreased in weight in 2020. However, from 2021, decarbonization started to become more important again in the “new normal†and sector recovery. In terms of overall and sustained sustainability, low-cost carriers and small full-service carriers with predominantly domestic networks are ranked as best performers. Renewing fleet, attaching decarbonization conditions to government aid and reviewing airport slot policies are important to prepare the aviation industry for the next pandemic or disruption.

Suggested Citation

  • Tanrıverdi, Gökhan & Merkert, Rico & KaramaÅŸa, ÇaÄŸlar & Asker, Veysi, 2023. "Using multi-criteria performance measurement models to evaluate the financial, operational and environmental sustainability of airlines," Journal of Air Transport Management, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000996
    DOI: 10.1016/j.jairtraman.2023.102456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699723000996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    2. Amankwah-Amoah, Joseph, 2020. "Stepping Up and Stepping Out of COVID-19: New Challenges for Environmental Sustainability Policies in the Global Airline Industry," MPRA Paper 101491, University Library of Munich, Germany.
    3. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    4. Wang, Wei-Kang & Lin, Fengyi & Ting, Irene Wei Kiong & Kweh, Qian Long & Lu, Wen-Min & Chiu, Tzu-Yu, 2017. "Does asset-light strategy contribute to the dynamic efficiency of global airlines?," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 99-108.
    5. Huang, Fei & Zhou, Dequn & Hu, Jin-Li & Wang, Qunwei, 2020. "Integrated airline productivity performance evaluation with CO2 emissions and flight delays," Journal of Air Transport Management, Elsevier, vol. 84(C).
    6. Merkert, Rico & Swidan, Hassan, 2019. "Flying with(out) a safety net: Financial hedging in the airline industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 206-219.
    7. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    8. Maneenop, Sakkakom & Kotcharin, Suntichai, 2020. "The impacts of COVID-19 on the global airline industry: An event study approach," Journal of Air Transport Management, Elsevier, vol. 89(C).
    9. Yalcin, Ahmet Selcuk & Kilic, Huseyin Selcuk & Delen, Dursun, 2022. "The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    10. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Bhadra, Dipasis, 2009. "Race to the bottom or swimming upstream: Performance analysis of US airlines," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 227-235.
    12. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    13. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    14. Gudiel Pineda, Pedro Jose & Liou, James J.H. & Hsu, Chao-Che & Chuang, Yen-Ching, 2018. "An integrated MCDM model for improving airline operational and financial performance," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 103-117.
    15. Morteza Yazdani & Pascale Zaraté & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2019. "A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems," Post-Print hal-02879091, HAL.
    16. Chao, Ching-Cheng & Kao, Ko-Ting, 2015. "Selection of strategic cargo alliance by airlines," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 29-36.
    17. Arjomandi, Amir & Seufert, Juergen Heinz, 2014. "An evaluation of the world's major airlines' technical and environmental performance," Economic Modelling, Elsevier, vol. 41(C), pages 133-144.
    18. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "Dynamic carbon emission performance of Chinese airlines: A global Malmquist index analysis," Journal of Air Transport Management, Elsevier, vol. 65(C), pages 99-109.
    19. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    20. Atems, Bebonchu & Yimga, Jules, 2021. "Quantifying the impact of the COVID-19 pandemic on US airline stock prices," Journal of Air Transport Management, Elsevier, vol. 97(C).
    21. Abate, Megersa & Christidis, Panayotis & Purwanto, Alloysius Joko, 2020. "Government support to airlines in the aftermath of the COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 89(C).
    22. Hsu, Chao-Che & Liou, James J.H., 2013. "An outsourcing provider decision model for the airline industry," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 40-46.
    23. Swidan, Hassan & Merkert, Rico, 2019. "The relative effect of operational hedging on airline operating costs," Transport Policy, Elsevier, vol. 80(C), pages 70-77.
    24. Merkert, Rico & Williams, George, 2013. "Determinants of European PSO airline efficiency – Evidence from a semi-parametric approach," Journal of Air Transport Management, Elsevier, vol. 29(C), pages 11-16.
    25. Merkert, Rico & Hensher, David A., 2011. "The impact of strategic management and fleet planning on airline efficiency - A random effects Tobit model based on DEA efficiency scores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 686-695, August.
    26. Pires, Heloisa Márcia & Fernandes, Elton, 2012. "Malmquist financial efficiency analysis for airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 1049-1055.
    27. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    28. Cao, Qian & Lv, Jinfeng & Zhang, Jun, 2015. "Productivity efficiency analysis of the airlines in China after deregulation," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 135-140.
    29. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    30. Lu, Wen-Min & Wang, Wei-Kang & Hung, Shiu-Wan & Lu, En-Tzu, 2012. "The effects of corporate governance on airline performance: Production and marketing efficiency perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 529-544.
    31. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    32. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kottas, Angelos T. & Madas, Michael A., 2018. "Comparative efficiency analysis of major international airlines using Data Envelopment Analysis: Exploring effects of alliance membership and other operational efficiency determinants," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 1-17.
    2. Chen, Zhongfei & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Convergence in the Chinese airline industry: A Malmquist productivity analysis," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 77-86.
    3. Aydın, Umut & Karadayi, Melis Almula & Ülengin, Füsun, 2020. "How efficient airways act as role models and in what dimensions? A superefficiency DEA model enhanced by social network analysis," Journal of Air Transport Management, Elsevier, vol. 82(C).
    4. Mahmut BAKIR & Şahap AKAN & Kasım KIRACI & Darjan KARABASEVIC & Dragisa STANUJKIC & Gabrijela POPOVIC, 2020. "Multiple-Criteria Approach of the Operational Performance Evaluation in the Airline Industry: Evidence from the Emerging Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 149-172, July.
    5. Huang, Fei & Zhou, Dequn & Hu, Jin-Li & Wang, Qunwei, 2020. "Integrated airline productivity performance evaluation with CO2 emissions and flight delays," Journal of Air Transport Management, Elsevier, vol. 84(C).
    6. Liu, Dan & Zhang, Jiahuang & Yu, Ming-Miin, 2023. "Decomposing airline profit inefficiency in NDEA through the non-competitive Nerlovian profit inefficiency model," Journal of Air Transport Management, Elsevier, vol. 107(C).
    7. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    8. Yu, Ming-Miin & Chang, Yu-Chun & Chen, Li-Hsueh, 2016. "Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 186-198.
    9. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    10. Kaya, Gizem & Aydın, Umut & Ülengin, Burç & Karadayı, Melis Almula & Ülengin, Füsun, 2023. "How do airlines survive? An integrated efficiency analysis on the survival of airlines," Journal of Air Transport Management, Elsevier, vol. 107(C).
    11. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    12. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    13. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    14. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    15. Yakath Ali, Nurul Syuhadah & Yu, Chunyan & See, Kok Fong, 2021. "Four decades of airline productivity and efficiency studies: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 96(C).
    16. Barak, Sasan & Dahooei, Jalil Heidary, 2018. "A novel hybrid fuzzy DEA-Fuzzy MADM method for airlines safety evaluation," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 134-149.
    17. Nguyen, Minh-Anh Thi & Yu, Ming-Miin & Lirn, Taih-Cherng, 2022. "Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach," Transport Policy, Elsevier, vol. 117(C), pages 108-117.
    18. Fang-Chen Kao & Irene Wei Kiong Ting & Han-Chung Chou & Yi-Sung Liu, 2022. "Exploring the Influence of Corporate Social Responsibility on Efficiency: An Extended Dynamic Data Envelopment Analysis of the Global Airline Industry," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    19. Yu, Ming-Miin & Chen, Li-Hsueh, 2023. "Productivity change of airlines: A global total factor productivity index with network structure," Journal of Air Transport Management, Elsevier, vol. 109(C).
    20. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:112:y:2023:i:c:s0969699723000996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.