IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v75y2017icp1-15.html
   My bibliography  Save this article

Optimal hedging with basis risk under mean–variance criterion

Author

Listed:
  • Zhang, Jingong
  • Tan, Ken Seng
  • Weng, Chengguo

Abstract

Basis risk occurs naturally in a number of financial and insurance risk management problems. A notable example is in the context of hedging a derivative where the underlying security is either non-tradable or not sufficiently liquid. Other examples include hedging longevity risk using index-based longevity instrument and hedging crop yields using weather derivatives. These applications give rise to basis risk and it is imperative that such a risk needs to be taken into consideration for the adopted hedging strategy. In this paper, we consider the problem of hedging a European option using another correlated and liquidly traded asset and we investigate an optimal construction of hedging portfolio involving such an asset. The mean–variance criterion is adopted to evaluate the hedging performance, and a subgame Nash equilibrium is used to define the optimal solution. The problem is solved by resorting to a dynamic programming procedure and a change-of-measure technique. A closed-form optimal control process is obtained under a diffusion model setup. The solution we obtain is highly tractable and to the best of our knowledge, this is the first time the analytical solution exists for dynamic hedging of general European options with basis risk under the mean–variance criterion. Examples on hedging European call options are presented to foster the feasibility and importance of our optimal hedging strategy in the presence of basis risk.

Suggested Citation

  • Zhang, Jingong & Tan, Ken Seng & Weng, Chengguo, 2017. "Optimal hedging with basis risk under mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 1-15.
  • Handle: RePEc:eee:insuma:v:75:y:2017:i:c:p:1-15
    DOI: 10.1016/j.insmatheco.2017.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716304176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    2. Turvey, Calum G. & Islam, Zahirul, 1995. "Equity and efficiency considerations in area versus individual yield insurance," Agricultural Economics, Blackwell, vol. 12(1), pages 23-35, April.
    3. Wu, Huiling & Zeng, Yan, 2015. "Equilibrium investment strategy for defined-contribution pension schemes with generalized mean–variance criterion and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 396-408.
    4. Joshua D. Woodard & Philip Garcia, 2008. "Basis risk and weather hedging effectiveness," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 99-117, May.
    5. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    6. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Coughlan, Guy & Khalaf-Allah, Marwa & Ye, Yijing & Kumar, Sumit & Cairns, Andrew & Blake, David & Dowd, Kevin, 2011. "Longevity hedging 101: A framework for longevity basis risk analysis and hedge effectiveness," MPRA Paper 35743, University Library of Munich, Germany.
    9. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    10. Wong, Tat Wing & Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Time-consistent mean–variance hedging of longevity risk: Effect of cointegration," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 56-67.
    11. Patrick L. Brockett & Mulong Wang & Chuanhou Yang, 2005. "Weather Derivatives and Weather Risk Management," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 8(1), pages 127-140, March.
    12. Leonard MacLean & Yonggan Zhao & William Ziemba, 2011. "Mean-variance versus expected utility in dynamic investment analysis," Computational Management Science, Springer, vol. 8(1), pages 3-22, April.
    13. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    14. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    15. Jerry R. Skees & J. Roy Black & Barry J. Barnett, 1997. "Designing and Rating an Area Yield Crop Insurance Contract," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 430-438.
    16. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    17. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    18. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    19. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    20. Michael Monoyios, 2004. "Performance of utility-based strategies for hedging basis risk," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 245-255.
    21. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    22. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
    23. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    24. Guy Coughlan & Marwa Khalaf-Allah & Yijing Ye & Sumit Kumar & Andrew Cairns & David Blake & Kevin Dowd, 2011. "Longevity Hedging 101," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 150-176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Cheng & Christina Sklibosios Nikitopoulos & Erik Schlögl, 2019. "Interest rate risk in long‐dated commodity options positions: To hedge or not to hedge?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 109-127, January.
    2. George E. Halkos & Apostolos S. Tsirivis, 2019. "Energy Commodities: A Review of Optimal Hedging Strategies," Energies, MDPI, vol. 12(20), pages 1-19, October.
    3. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2018. "Time-consistent mean–variance portfolio optimization: A numerical impulse control approach," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 9-28.
    2. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    3. Bosserhoff, Frank & Stadje, Mitja, 2021. "Time-consistent mean-variance investment with unit linked life insurance contracts in a jump-diffusion setting," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 130-146.
    4. Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
    5. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    6. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    7. Li, Yongwu & Qiao, Han & Wang, Shouyang & Zhang, Ling, 2015. "Time-consistent investment strategy under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 187-197.
    8. Tan, Ken Seng & Weng, Chengguo & Zhang, Jinggong, 2022. "Optimal dynamic longevity hedge with basis risk," European Journal of Operational Research, Elsevier, vol. 297(1), pages 325-337.
    9. Yan, Tingjin & Wong, Hoi Ying, 2020. "Open-loop equilibrium reinsurance-investment strategy under mean–variance criterion with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 105-119.
    10. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    11. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    12. Helu Xiao & Tiantian Ren & Yanfei Bai & Zhongbao Zhou, 2019. "Time-Consistent Investment-Reinsurance Strategies for the Insurer and the Reinsurer under the Generalized Mean-Variance Criteria," Mathematics, MDPI, vol. 7(9), pages 1-25, September.
    13. Frank Bosserhoff & Mitja Stadje, 2019. "Mean-variance hedging of unit linked life insurance contracts in a jump-diffusion model," Papers 1908.05534, arXiv.org.
    14. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    15. Liang, Zongxia & Song, Min, 2015. "Time-consistent reinsurance and investment strategies for mean–variance insurer under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 66-76.
    16. Wu, Huiling & Chen, Hua, 2015. "Nash equilibrium strategy for a multi-period mean–variance portfolio selection problem with regime switching," Economic Modelling, Elsevier, vol. 46(C), pages 79-90.
    17. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    18. Sun, Jingyun & Li, Zhongfei & Zeng, Yan, 2016. "Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 158-172.
    19. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    20. Shen, Yang & Zou, Bin, 2021. "Mean–variance investment and risk control strategies — A time-consistent approach via a forward auxiliary process," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 68-80.

    More about this item

    Keywords

    Basis risk; Optimal hedging; Time consistent planning; Mean–variance; European options;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:75:y:2017:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.