IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i2p208-215.html
   My bibliography  Save this article

Optimal premium policy of an insurance firm: Full and partial information

Author

Listed:
  • Huang, Jianhui
  • Wang, Guangchen
  • Wu, Zhen

Abstract

Herein, we study the optimization problem faced by an insurance firm who can control its cash-balance dynamics by adjusting the underlying premium rate. The firm's objective is to minimize the total deviation of its cash-balance process to some pre-set target levels by selecting an appropriate premium policy. Our problem is totally new and has three distinguishable features: (1) both full and partial information cases are investigated here; (2) the state is subject to terminal constraint; (3) a forward-backward stochastic differential equation formulation is given which is more systematic and mathematically advanced. This formulation also enables us to continue further research in a generalized stochastic recursive control framework (see Duffie and Epstein (1992), El Karoui et al. (2001), etc.). The optimal premium policy with the associated optimal objective functional are completely and explicitly derived. In addition, a backward separation technique adaptive to forward-backward stochastic systems with the state constraint is presented as an efficient and convenient alternative to the traditional Wonham's (1968) separation principle in our partial information setup. Some concluding remarks are also given here.

Suggested Citation

  • Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:208-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00054-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    2. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    3. Xie, Shuxiang & Li, Zhongfei & Wang, Shouyang, 2008. "Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 943-953, June.
    4. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    5. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    6. Moore, Kristen S. & Young, Virginia R., 2006. "Optimal insurance in a continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 47-68, August.
    7. Norberg, Ragnar, 1999. "Ruin problems with assets and liabilities of diffusion type," Stochastic Processes and their Applications, Elsevier, vol. 81(2), pages 255-269, June.
    8. Duffie, Darrel & Lions, Pierre-Louis, 1992. "PDE solutions of stochastic differential utility," Journal of Mathematical Economics, Elsevier, vol. 21(6), pages 577-606.
    9. Chang, S. C. & Tzeng, Larry Y. & Miao, Jerry C. Y., 2003. "Pension funding incorporating downside risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(2), pages 217-228, April.
    10. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    11. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    12. Haberman, Steven, 1993. "Pension funding with time delays and autoregressive rates of investment return," Insurance: Mathematics and Economics, Elsevier, vol. 13(1), pages 45-56, September.
    13. Taksar, Michael I. & Zhou, Xun Yu, 1998. "Optimal risk and dividend control for a company with a debt liability," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 105-122, May.
    14. Xiong, Jie, 2008. "An Introduction to Stochastic Filtering Theory," OUP Catalogue, Oxford University Press, number 9780199219704.
    15. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2008. "Mean-variance portfolio and contribution selection in stochastic pension funding," European Journal of Operational Research, Elsevier, vol. 187(1), pages 120-137, May.
    16. Haberman, S. & Sung, Joo-Ho, 2002. "Dynamic Programming Approach to Pension Funding: the Case of Incomplete State Information," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 129-142, May.
    17. Cairns, Andrew, 2000. "Some Notes on the Dynamics and Optimal Control of Stochastic Pension Fund Models in Continuous Time," ASTIN Bulletin, Cambridge University Press, vol. 30(1), pages 19-55, May.
    18. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    19. Ngwira, Bernard & Gerrard, Russell, 2007. "Stochastic pension fund control in the presence of Poisson jumps," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 283-292, March.
    20. Boulier, Jean-Francois & Huang, ShaoJuan & Taillard, Gregory, 2001. "Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 173-189, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    2. Xing, Jie & Ma, Jingtang & Yang, Wensheng, 2023. "Optimal entry decision of unemployment insurance under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 31-52.
    3. Na Li & Yuan Wang & Zhen Wu, 2018. "An Indefinite Stochastic Linear Quadratic Optimal Control Problem with Delay and Related Forward–Backward Stochastic Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 722-744, November.
    4. Wu, Zhen & Zhuang, Yi, 2018. "Linear-quadratic partially observed forward–backward stochastic differential games and its application in finance," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 577-592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiyang Wang & Zhen Wu, 2014. "Partially Observed Time-Inconsistency Recursive Optimization Problem and Application," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 664-687, May.
    2. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    3. Dalila Guerdouh & Nabil Khelfallah & Josep Vives, 2022. "Optimal Control Strategies for the Premium Policy of an Insurance Firm with Jump Diffusion Assets and Stochastic Interest Rate," JRFM, MDPI, vol. 15(3), pages 1-19, March.
    4. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    5. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    6. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    7. Junchi Ma & Mobolaji Ogunsolu & Jinniao Qiu & Ayşe Deniz Sezer, 2023. "Credit risk pricing in a consumption‐based equilibrium framework with incomplete accounting information," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 666-708, July.
    8. van den Bremer, Ton & van der Ploeg, Frederick & Wills, Samuel, 2016. "The Elephant In The Ground: Managing Oil And Sovereign Wealth," European Economic Review, Elsevier, vol. 82(C), pages 113-131.
    9. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2012. "Stochastic pension funding when the benefit and the risky asset follow jump diffusion processes," European Journal of Operational Research, Elsevier, vol. 220(2), pages 404-413.
    10. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    11. Alessandro Milazzo & Elena Vigna, 2018. "The Italian Pension Gap: A Stochastic Optimal Control Approach," Risks, MDPI, vol. 6(2), pages 1-20, April.
    12. Yao, Haixiang & Yang, Zhou & Chen, Ping, 2013. "Markowitz’s mean–variance defined contribution pension fund management under inflation: A continuous-time model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 851-863.
    13. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    14. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    15. Ankush Agarwal & Christian-Oliver Ewald & Yongjie Wang, 2023. "Hedging longevity risk in defined contribution pension schemes," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    16. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    17. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," Carlo Alberto Notebooks 108, Collegio Carlo Alberto, revised 2009.
    18. Menoncin, Francesco & Vigna, Elena, 2017. "Mean–variance target-based optimisation for defined contribution pension schemes in a stochastic framework," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 172-184.
    19. Alessandro Milazzo & Elena Vigna, 2018. "“The Italian Pension Gap: a Stochastic Optimal Control Approach"," CeRP Working Papers 179, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    20. Josa-Fombellida, Ricardo & López-Casado, Paula, 2023. "A defined benefit pension plan game with Brownian and Poisson jumps uncertainty," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1294-1311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:208-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.