IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v102y2022icp91-110.html
   My bibliography  Save this article

Portfolio risk analysis of excess of loss reinsurance

Author

Listed:
  • Tang, Qihe
  • Tong, Zhiwei
  • Xun, Li

Abstract

Consider a catastrophe insurance market in which primary insurers purchase excess of loss reinsurance to transfer their higher-layer losses to a reinsurer. We conduct a portfolio risk analysis for the reinsurer. In doing so, we model the losses to the primary insurers by a mixture structure, which effectively integrates three risk factors: common shock, systematic risk, and idiosyncratic risk. Assume that the reinsurer holds an initial capital Cn that is in accordance with its market size n. When expanding its business, the reinsurer needs to comply with a certain VaR-based solvency capital requirement, which determines an infimal retention level rn according to the initial capital Cn. As our main results, we find the limit of rn as n→∞ and then establish a weak convergence for the reinsurance portfolio loss. The latter result is applied to approximate the distortion risk measures of the reinsurance portfolio loss. In our numerical studies, we examine the accuracy of the obtained approximations and conduct various sensitivity tests against some risk parameters.

Suggested Citation

  • Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Portfolio risk analysis of excess of loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 91-110.
  • Handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:91-110
    DOI: 10.1016/j.insmatheco.2021.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721001700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jun Cai & Yichun Chi, 2020. "Optimal reinsurance designs based on risk measures: a review," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 1-13, July.
    2. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    3. Chan, Fung-Yee & Gerber, Hans U., 1985. "The Reinsurer's Monopoly and the Bowley Solution," ASTIN Bulletin, Cambridge University Press, vol. 15(2), pages 141-148, November.
    4. Jun Cai & Yichun Chi, 2020. "Responses to discussions on ‘Optimal reinsurance designs based on risk measures: a review’," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 4(1), pages 26-27, July.
    5. Vandewalle, B. & Beirlant, J., 2006. "On univariate extreme value statistics and the estimation of reinsurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 441-459, June.
    6. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    7. Paul Glasserman & Wanmo Kang & Perwez Shahabuddin, 2007. "Large Deviations In Multifactor Portfolio Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 345-379, July.
    8. Deme, El Hadji & Girard, Stéphane & Guillou, Armelle, 2013. "Reduced-bias estimator of the Proportional Hazard Premium for heavy-tailed distributions," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 550-559.
    9. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    10. Kousky, Carolyn & Cooke, Roger M., 2009. "The Unholy Trinity: Fat Tails, Tail Dependence, and Micro-Correlations," RFF Working Paper Series dp-09-36-rev.pdf, Resources for the Future.
    11. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    12. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    13. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    14. Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
    15. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    2. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    3. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    4. Zhuo Jin & Zuo Quan Xu & Bin Zou, 2023. "Optimal moral-hazard-free reinsurance under extended distortion premium principles," Papers 2304.08819, arXiv.org.
    5. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    6. Cheng-Der Fuh & Chuan-Ju Wang, 2017. "Efficient Exponential Tilting for Portfolio Credit Risk," Papers 1711.03744, arXiv.org, revised Apr 2019.
    7. Vincent, Léonard & Albrecher, Hansjörg & Krvavych, Yuriy, 2021. "Structured reinsurance deals with reference to relative market performance," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 125-139.
    8. El Methni, Jonathan & Stupfler, Gilles, 2018. "Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 6(C), pages 129-148.
    9. Benkhelifa, Lazhar, 2014. "Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 65-70.
    10. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    11. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    12. Gabriela Zeller & Matthias Scherer, 2023. "Risk mitigation services in cyber insurance: optimal contract design and price structure," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 502-547, April.
    13. Anand Deo & Sandeep Juneja, 2021. "Credit Risk: Simple Closed-Form Approximate Maximum Likelihood Estimator," Operations Research, INFORMS, vol. 69(2), pages 361-379, March.
    14. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2018. "Tail expectile process and risk assessment," TSE Working Papers 18-944, Toulouse School of Economics (TSE).
    15. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    16. Chi, Yichun & Tan, Ken Seng & Zhuang, Sheng Chao, 2020. "A Bowley solution with limited ceded risk for a monopolistic reinsurer," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 188-201.
    17. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    18. Wei, Li & Yuan, Zhongyi, 2016. "The loss given default of a low-default portfolio with weak contagion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 113-123.
    19. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    20. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.

    More about this item

    Keywords

    Mixture; Solvency capital requirement; Retention; Law of large numbers; Distortion risk measures;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:91-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.