Advanced Search
MyIDEAS: Login to save this article or follow this journal

Boundedly Rational Nash Equilibrium: A Probabilistic Choice Approach

Contents:

Author Info

  • Chen, Hsiao-Chi
  • Friedman, James W.
  • Thisse, Jacques-Francois

Abstract

This paper proposes an equilibrium concept for n-person finite games based on boundedly rational decision making by players. The players are modeled as following random choice behavior in the manner of the logit model of discrete choice theory as set forth by Luce, McFadden and others. The behavior of other players determines in a natural way a lottery facing each player i. At equilibrium, each player is using the appropriate choice probabilities, given the choice probabilities used by the others in the game. The rationality of the players is parameterized on a continuum from complete rationality to uniform random choice. Using results by McKelvey and Palfrey, we show existence of an equilibrium for any finite n-person game and convergence to Nash equilibrium. We also identify conditions such that, for given rationality parameters the path of choices over time when the players use fictitious play (their beliefs about other players' choices are given by the empirical distributions of those players) converges to equilibrium.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WFW-45M8X31-1M/2/294241dff5c6e91fdd51d1c30290f005
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 18 (1997)
Issue (Month): 1 (January)
Pages: 32-54

as in new window
Handle: RePEc:eee:gamebe:v:18:y:1997:i:1:p:32-54

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622836

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Miyao, Takahiro & Shapiro, Perry, 1981. "Discrete Choice and Variable Returns to Scale," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(2), pages 257-73, June.
  2. Victor Ginsburgh & André De Palma & Yorgo Papageorgiou & Jacques-François Thisse, 1999. "The principle of minimum differentiation holds under sufficient heterogeneity," ULB Institutional Repository 2013/3319, ULB -- Universite Libre de Bruxelles.
  3. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
  4. Rosenthal, Robert W, 1989. "A Bounded-Rationality Approach to the Study of Noncooperative Games," International Journal of Game Theory, Springer, vol. 18(3), pages 273-91.
  5. Armen A. Alchian, 1950. "Uncertainty, Evolution, and Economic Theory," Journal of Political Economy, University of Chicago Press, vol. 58, pages 211.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:18:y:1997:i:1:p:32-54. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.