IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v17y2011i4p363-377.html
   My bibliography  Save this article

Rewarding carbon sequestration in South-Western French forests: A costly operation?

Author

Listed:
  • Pajot, Guillaume

Abstract

The extension of rotation lengths in forests has been proposed as an option for increasing carbon storage and contributing to climate change mitigation. This paper presents the results of a case study conducted on forests located in the southwest of France. The aim of this research was to assess the cost effectiveness of a subsidy/tax system on carbon fluxes. First, it is shown that such a mechanism leads forest owners to extend rotation lengths. However, cost effectiveness analysis shows that: (1) marginal social costs are more expensive than the private marginal costs of carbon sequestration; (2) marginal costs are higher when carbon stocks are discounted, ranging from 170.1€/tC to 719.8€/tC with discounted carbon stocks; and from 38.8€/tC to 78.4€/tC with undiscounted carbon stocks; (3) marginal costs are in the range of measures of the social value of carbon for France; (4) marginal costs increase with timber prices and increase with discount rate.

Suggested Citation

  • Pajot, Guillaume, 2011. "Rewarding carbon sequestration in South-Western French forests: A costly operation?," Journal of Forest Economics, Elsevier, vol. 17(4), pages 363-377.
  • Handle: RePEc:eee:foreco:v:17:y:2011:i:4:p:363-377
    DOI: 10.1016/j.jfe.2010.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689911000304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2010.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Gollier & Phoebe Koundouri & Theologos Pantelidis, 2008. "Declining discount rates: Economic justifications and implications for long-run policy [‘Regime switches in interest rates’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 23(56), pages 758-795.
    2. Creedy, John & Wurzbacher, Anke D., 2001. "The economic value of a forested catchment with timber, water and carbon sequestration benefits," Ecological Economics, Elsevier, vol. 38(1), pages 71-83, July.
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    4. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    5. Alejandro Caparros & Pablo Campos & David Martin, 2003. "Influence of carbon dioxide abatement and recreational services on optimal forest rotation," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 6(3), pages 345-358.
    6. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. Samuelson, Paul A, 1976. "Economics of Forestry in an Evolving Society," Economic Inquiry, Western Economic Association International, vol. 14(4), pages 466-492, December.
    9. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    10. David Appels, 2001. "Forest rotation lengths under carbon sequestration payments," Others 0110007, University Library of Munich, Germany.
    11. G. Cornelis van Kooten & Sabina Lee Shaikh & Pavel Suchánek, 2002. "Mitigating Climate Change by Planting Trees: The Transaction Costs Trap," Land Economics, University of Wisconsin Press, vol. 78(4), pages 559-572.
    12. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barthès, Julien & Barkaoui, Ahmed, 2013. "Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 450-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    2. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    3. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    4. Adams, Thomas & Turner, James A., 2012. "An investigation into the effects of an emissions trading scheme on forest management and land use in New Zealand," Forest Policy and Economics, Elsevier, vol. 15(C), pages 78-90.
    5. Sabina Shaikh & Pavel Suchánek & Lili Sun & G. Cornelis van Kooten, 2003. "Does Inclusion of Landowners’ Non-Market Values Lower Costs of Creating Carbon Forest Sinks?," Working Papers 2003-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. van Kooten, G. Cornelis, 2004. "Economics of Forest and Agricultural Carbon Sinks," Working Papers 18160, University of Victoria, Resource Economics and Policy.
    7. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    8. Nijnik, Maria & Pajot, Guillaume & Moffat, Andy J. & Slee, Bill, 2013. "An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change," Forest Policy and Economics, Elsevier, vol. 26(C), pages 34-42.
    9. Shaikh, Sabina L. & Sun, Lili & van Kooten, G. Cornelis, 2005. "Are Agricultural Values a Reliable Guide in Determining Landowners’ Decisions to Create Carbon Forest Sinks?," Working Papers 37017, University of Victoria, Resource Economics and Policy.
    10. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    11. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    12. van Kooten, G. Cornelis & Johnston, Craig & Xu, Zhen, 2012. "Economics of Forest Carbon Sequestration," Working Papers 130808, University of Victoria, Resource Economics and Policy.
    13. Markowski-Lindsay, Marla & Stevens, Thomas & Kittredge, David B. & Butler, Brett J. & Catanzaro, Paul & Dickinson, Brenton J., 2011. "Barriers to Massachusetts forest landowner participation in carbon markets," Ecological Economics, Elsevier, vol. 71(C), pages 180-190.
    14. Yang, Hongqiang & Li, Xi, 2018. "Potential variation in opportunity cost estimates for REDD+ and its causes," Forest Policy and Economics, Elsevier, vol. 95(C), pages 138-146.
    15. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    16. Moss, Jonathan & Cacho, Oscar J., 2014. "Farm-scale analysis of the potential uptake of carbon offset activities," 2014 Conference, August 28-29, 2014, Nelson, New Zealand 187402, New Zealand Agricultural and Resource Economics Society.
    17. Marshall, Liz & Kelly, Alexia, 2010. "The Time Value of Carbon and Carbon Storage: Clarifying the terms and the policy implications of the debate," MPRA Paper 27326, University Library of Munich, Germany.
    18. Karky, Bhaskar Singh & Skutsch, Margaret, 2010. "The cost of carbon abatement through community forest management in Nepal Himalaya," Ecological Economics, Elsevier, vol. 69(3), pages 666-672, January.
    19. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    20. Köthke, Margret & Dieter, Matthias, 2010. "Effects of carbon sequestration rewards on forest management--An empirical application of adjusted Faustmann Formulae," Forest Policy and Economics, Elsevier, vol. 12(8), pages 589-597, October.

    More about this item

    Keywords

    Carbon sequestration; Forests; Cost effectiveness; Incentives; Rotation lengths; Carbon stocks; Marginal costs;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:17:y:2011:i:4:p:363-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.