IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p2116-2125.html
   My bibliography  Save this article

A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters

Author

Listed:
  • Falcão, António F.O.
  • Gato, Luís M.C.
  • Henriques, João C.C.
  • Borges, João E.
  • Pereiras, Bruno
  • Castro, Francisco

Abstract

A novel air turbine for bidirectional flows in oscillating-water-column wave energy converters is presented and its performance is analyzed. The turbine is based on a pair of conventional radial-inflow rotors mounted on the same shaft, complemented by the corresponding guide vane rows, by a curved-duct manifold arranged circumferentially in a period manner and by a two-position cylindrical valve. Numerical values of the performance of the whole machine were obtained from published experimental data of the flow through a conventional radial-inflow gas turbine, together with CFD (computational fluid dynamics) results for aerodynamic losses in the curved duct manifold. Four different geometries, combined with five different sizes, of the curved-duct manifold were numerically simulated. Windage losses, that occur at the inactive rotor and are inherent to the machine conception, were found to be a major loss. A peak value of about 86% was obtained for the overall efficiency of the machine. Comparisons are presented between the new turbine and the biradial turbine (sliding guide-vanes version), the latter being possibly the most efficient self-rectifying turbine model-tested so far. The new turbine was found to be more efficient, both in peak instantaneous efficiency and in maximum average efficiency in random waves, by a margin of about 8%.

Suggested Citation

  • Falcão, António F.O. & Gato, Luís M.C. & Henriques, João C.C. & Borges, João E. & Pereiras, Bruno & Castro, Francisco, 2015. "A novel twin-rotor radial-inflow air turbine for oscillating-water-column wave energy converters," Energy, Elsevier, vol. 93(P2), pages 2116-2125.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2116-2125
    DOI: 10.1016/j.energy.2015.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215014140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayashankar, V. & Anand, S. & Geetha, T. & Santhakumar, S. & Jagadeesh Kumar, V. & Ravindran, M. & Setoguchi, T. & Takao, M. & Toyota, K. & Nagata, S., 2009. "A twin unidirectional impulse turbine topology for OWC based wave energy plants," Renewable Energy, Elsevier, vol. 34(3), pages 692-698.
    2. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters. Part 2. Results from model testing," Renewable Energy, Elsevier, vol. 53(C), pages 159-164.
    3. Mala, K. & Jayaraj, J. & Jayashankar, V. & Muruganandam, T.M. & Santhakumar, S. & Ravindran, M. & Takao, M. & Setoguchi, T. & Toyota, K. & Nagata, S., 2011. "A twin unidirectional impulse turbine topology for OWC based wave energy plants – Experimental validation and scaling," Renewable Energy, Elsevier, vol. 36(1), pages 307-314.
    4. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    5. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez, Laudino & Pereiras, Bruno & Fernández-Oro, Jesús & Castro, Francisco, 2019. "Optimization and experimental tests of a centrifugal turbine for an OWC device equipped with a twin turbines configuration," Energy, Elsevier, vol. 171(C), pages 710-720.
    2. Torres, Fernando R. & Teixeira, Paulo R.F. & Didier, Eric, 2018. "A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models," Renewable Energy, Elsevier, vol. 121(C), pages 9-18.
    3. Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
    4. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    5. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    6. Manuel García-Díaz & Bruno Pereiras & Celia Miguel-González & Laudino Rodríguez & Jesús Fernández-Oro, 2021. "CFD Analysis of the Performance of a Double Decker Turbine for Wave Energy Conversion," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
    8. García-Díaz, Manuel & Pereiras, Bruno & Miguel-González, Celia & Rodríguez, Laudino & Fernández-Oro, Jesús, 2021. "Design of a new turbine for OWC wave energy converters: The DDT concept," Renewable Energy, Elsevier, vol. 169(C), pages 404-413.
    9. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. Pierre Benreguig & James Kelly & Vikram Pakrashi & Jimmy Murphy, 2019. "Wave-to-Wire Model Development and Validation for Two OWC Type Wave Energy Converters," Energies, MDPI, vol. 12(20), pages 1-28, October.
    11. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    12. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    13. Portillo, J.C.C. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2023. "Model tests on a floating coaxial-duct OWC wave energy converter with focus on the spring-like air compressibility effect," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    2. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    3. Gomes, R.P.F. & Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O., 2012. "Multi-point aerodynamic optimization of the rotor blade sections of an axial-flow impulse air turbine for wave energy conversion," Energy, Elsevier, vol. 45(1), pages 570-580.
    4. Erlantz Otaola & Aitor J. Garrido & Jon Lekube & Izaskun Garrido, 2019. "A Comparative Analysis of Self-Rectifying Turbines for the Mutriku Oscillating Water Column Energy Plant," Complexity, Hindawi, vol. 2019, pages 1-14, January.
    5. Gato, L.M.C. & Maduro, A.R. & Carrelhas, A.A.D. & Henriques, J.C.C. & Ferreira, D.N., 2021. "Performance improvement of the biradial self-rectifying impulse air-turbine for wave energy conversion by multi-row guide vanes: Design and experimental results," Energy, Elsevier, vol. 216(C).
    6. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    7. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    8. Ansarifard, Nazanin & Kianejad, S.S. & Fleming, Alan & Henderson, Alan & Chai, Shuhong, 2020. "Design optimization of a purely radial turbine for operation in the inhalation mode of an oscillating water column," Renewable Energy, Elsevier, vol. 152(C), pages 540-556.
    9. Falcão, A.F.O. & Gato, L.M.C. & Nunes, E.P.A.S., 2013. "A novel radial self-rectifying air turbine for use in wave energy converters," Renewable Energy, Elsevier, vol. 50(C), pages 289-298.
    10. Falcão, António F.O. & Henriques, João C.C. & Gato, Luís M.C., 2018. "Self-rectifying air turbines for wave energy conversion: A comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1231-1241.
    11. Nazanin Ansarifard & Alan Fleming & Alan Henderson & S.S. Kianejad & Shuhong Chai, 2019. "Design Optimisation of a Unidirectional Centrifugal Radial-Air-Turbine for Application in OWC Wave Energy Converters," Energies, MDPI, vol. 12(14), pages 1-22, July.
    12. Moisel, Christoph & Carolus, Thomas H., 2016. "A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion," Renewable Energy, Elsevier, vol. 86(C), pages 1340-1352.
    13. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O., 2020. "Experimental study of a self-rectifying biradial air turbine with fixed guide-vanes arranged into two concentric annular rows," Energy, Elsevier, vol. 198(C).
    14. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    15. Hui Zhang & Wanan Sheng & Zhimin Zha & George Aggidis, 2022. "A Preliminary Study on Identifying Biomimetic Entities for Generating Novel Wave Energy Converters," Energies, MDPI, vol. 15(7), pages 1-20, March.
    16. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
    17. Tomás Cabral & Daniel Clemente & Paulo Rosa-Santos & Francisco Taveira-Pinto & Tiago Morais & Filipe Belga & Henrique Cestaro, 2020. "Performance Assessment of a Hybrid Wave Energy Converter Integrated into a Harbor Breakwater," Energies, MDPI, vol. 13(1), pages 1-22, January.
    18. Ferreira, D.N. & Gato, L.M.C. & Eça, L. & Henriques, J.C.C., 2020. "Aerodynamic analysis of a biradial turbine with movable guide-vanes: Incidence and slip effects on efficiency," Energy, Elsevier, vol. 200(C).
    19. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    20. Henriques, J.C.C. & Portillo, J.C.C. & Gato, L.M.C. & Gomes, R.P.F. & Ferreira, D.N. & Falcão, A.F.O., 2016. "Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys," Energy, Elsevier, vol. 112(C), pages 852-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:2116-2125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.