IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp745-758.html
   My bibliography  Save this article

Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer

Author

Listed:
  • Li, T.X.
  • Wang, R.Z.
  • Yan, T.

Abstract

Thermal energy storage plays a vital role in the sustainable utilization of solar energy for heating and cooling applications due to its inherent instability and discontinuity. An advanced high-performance solid–gas thermochemical sorption thermal battery is developed for solar cooling and heating energy storage and heat transformer. Solar thermal energy is stored in the form of bond energy during the charging phase and the stored energy is released in the form of heat and cold energy during the discharging phase based on the energy conversion between thermal energy and bond energy of sorption potential during the solid–gas sorption process of working pair. The heat and cold energy storage densities are as high as 1300–1600 kJ/kg and 640–720 kJ/kg respectively when the sorption thermal battery using working pair of SrCl2–NH3 works as short-term and long-term seasonal energy storage. Moreover, the working temperature of stored energy can be effectively upgraded by using the sorption thermal battery. It appears that the proposed sorption thermal battery is an effective method for the short-term and long-term storage of solar thermal energy, and it has distinct advantages of combined cold and heat storage, high energy density, integrated energy storage and energy upgrade in comparison with conventional energy storage methods.

Suggested Citation

  • Li, T.X. & Wang, R.Z. & Yan, T., 2015. "Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer," Energy, Elsevier, vol. 84(C), pages 745-758.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:745-758
    DOI: 10.1016/j.energy.2015.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
    2. Abedin, Ali Haji & Rosen, Marc A., 2012. "Closed and open thermochemical energy storage: Energy- and exergy-based comparisons," Energy, Elsevier, vol. 41(1), pages 83-92.
    3. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    4. Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
    5. Wang, R.Z. & Xia, Z.Z. & Wang, L.W. & Lu, Z.S. & Li, S.L. & Li, T.X. & Wu, J.Y. & He, S., 2011. "Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy," Energy, Elsevier, vol. 36(9), pages 5425-5439.
    6. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    7. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    8. Abedin, Ali Haji & Rosen, Marc A., 2012. "Assessment of a closed thermochemical energy storage using energy and exergy methods," Applied Energy, Elsevier, vol. 93(C), pages 18-23.
    9. L. G. Gordeeva & Yu. I. Aristov, 2012. "Composites ‘salt inside porous matrix’ for adsorption heat transformation: a current state-of-the-art and new trends," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 7(4), pages 288-302, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    2. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
    3. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    4. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Girnik, I.S. & Grekova, A.D. & Li, T.X. & Wang, R.Z. & Dutta, P. & Srinivasa Murthy, S. & Aristov, Yu.I., 2020. "Composite “LiCl/MWCNT/PVA” for adsorption thermal battery: Dynamics of methanol sorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
    7. Zhang, Y.N. & Wang, R.Z. & Zhao, Y.J. & Li, T.X. & Riffat, S.B. & Wajid, N.M., 2016. "Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage," Energy, Elsevier, vol. 115(P1), pages 120-128.
    8. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    9. Li, Qing & Shao, Yu-qiang & Shao, Xiao-dong & Liu, Huan-ling & Xie, Gongnan, 2021. "Activation process modeling and performance analysis of thermal batteries considering ignition time interval of heat pellets," Energy, Elsevier, vol. 219(C).
    10. Jiang, L. & Roskilly, A.P. & Wang, R.Z. & Wang, L.W. & Lu, Y.J., 2017. "Analysis on innovative modular sorption and resorption thermal cell for cold and heat cogeneration," Applied Energy, Elsevier, vol. 204(C), pages 767-779.
    11. Li, T.X. & Wu, S. & Yan, T. & Xu, J.X. & Wang, R.Z., 2016. "A novel solid–gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage," Applied Energy, Elsevier, vol. 161(C), pages 1-10.
    12. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    13. Xu, Z.Y. & Wang, R.Z., 2017. "A sorption thermal storage system with large concentration glide," Energy, Elsevier, vol. 141(C), pages 380-388.
    14. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    15. Jiang, L. & Liu, W. & Lin, Y.C. & Wang, R.Q. & Zhang, X.J. & Hu, M.K., 2022. "Hybrid thermochemical sorption seasonal storage for ultra-low temperature solar energy utilization," Energy, Elsevier, vol. 239(PB).
    16. Sharma, Rakesh & Anil Kumar, E., 2017. "Study of ammoniated salts based thermochemical energy storage system with heat up-gradation: A thermodynamic approach," Energy, Elsevier, vol. 141(C), pages 1705-1716.
    17. Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    2. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    3. Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
    4. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    5. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    6. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    7. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    8. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    9. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    10. Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
    11. Lefebvre, Dominique & Tezel, F. Handan, 2017. "A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 116-125.
    12. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    13. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2014. "Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance," Applied Energy, Elsevier, vol. 129(C), pages 177-186.
    14. Zhang, Heng & Liu, Shuli & Shukla, Ashish & Zou, Yuliang & Han, Xiaojing & Shen, Yongliang & Yang, Liu & Zhang, Pengwei & Kusakana, Kanzumba, 2022. "Thermal performance study of thermochemical reactor using net-packed method," Renewable Energy, Elsevier, vol. 182(C), pages 483-493.
    15. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    16. N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.
    17. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
    18. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Müller, Danny & Knoll, Christian & Gravogl, Georg & Jordan, Christian & Eitenberger, Elisabeth & Friedbacher, Gernot & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Miletich, R, 2021. "Medium-temperature thermochemical energy storage with transition metal ammoniates – A systematic material comparison," Applied Energy, Elsevier, vol. 285(C).
    20. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:745-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.