IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp462-472.html
   My bibliography  Save this article

Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor

Author

Listed:
  • Wu, Wei
  • Christiana, Veni Indah
  • Chen, Shin-An
  • Hwang, Jenn-Jiang

Abstract

A wastewater treatment process is developed as a heat-integrated fuel processor to produce hydrogen. If the hydrogen flow is directly connected to the PEMFC (proton exchange membrane fuel cell), then a stand-alone PV/FC/battery hybrid power system is developed to meet the daily load demand. According to the prescribed scenarios such as wastewater conditions and weather patterns, the reliability of the power supply is expressed in terms of the LPSP (loss of power supply probability). To address the lowest cost of electricity, an economic sizing model with regard to the LCE (levelized cost of energy) is taken into account. Regarding the trade-off between investment costs and power reliability, the techno-economic optimization algorithm for the minimization of the LCE subject to LPSP is used to determine the optimum hybrid power system configuration.

Suggested Citation

  • Wu, Wei & Christiana, Veni Indah & Chen, Shin-An & Hwang, Jenn-Jiang, 2015. "Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor," Energy, Elsevier, vol. 84(C), pages 462-472.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:462-472
    DOI: 10.1016/j.energy.2015.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    2. Yang, H.X. & Lu, L. & Burnett, J., 2003. "Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong," Renewable Energy, Elsevier, vol. 28(11), pages 1813-1824.
    3. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    4. Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
    5. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    6. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    7. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    8. Rahimi, Sahand & Meratizaman, Mousa & Monadizadeh, Sina & Amidpour, Majid, 2014. "Techno-economic analysis of wind turbine–PEM (polymer electrolyte membrane) fuel cell hybrid system in standalone area," Energy, Elsevier, vol. 67(C), pages 381-396.
    9. Bianchi, M. & Branchini, L. & Ferrari, C. & Melino, F., 2014. "Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector," Applied Energy, Elsevier, vol. 136(C), pages 805-816.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    2. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    3. Seme, Sebastijan & Lukač, Niko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Power quality experimental analysis of grid-connected photovoltaic systems in urban distribution networks," Energy, Elsevier, vol. 139(C), pages 1261-1266.
    4. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    5. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
    6. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    7. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    8. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    9. Chukwuma Ogbonnaya & Chamil Abeykoon & Adel Nasser & Ali Turan & Cyril Sunday Ume, 2021. "Prospects of Integrated Photovoltaic-Fuel Cell Systems in a Hydrogen Economy: A Comprehensive Review," Energies, MDPI, vol. 14(20), pages 1-33, October.
    10. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    11. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    2. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    3. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    4. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    5. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    6. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    7. Nogueira, Carlos Eduardo Camargo & Vidotto, Magno Luiz & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & Chaves, Luiz Inácio & Edwiges, Thiago & Santos, Darlisson Bentes dos & Wernck, 2014. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 151-157.
    8. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    9. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    10. Abdullah, M.A. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "Sustainable energy system design with distributed renewable resources considering economic, environmental and uncertainty aspects," Renewable Energy, Elsevier, vol. 78(C), pages 165-172.
    11. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    12. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    14. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    15. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    16. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    17. Abedini, Mohammad & Moradi, Mohammad H. & Hosseinian, S. Mahdi, 2016. "Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm," Renewable Energy, Elsevier, vol. 90(C), pages 430-439.
    18. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    19. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    20. Chochowski, Andrzej & Obstawski, Paweł, 2017. "The use of thermal-electric analogy in solar collector thermal state analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 397-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:462-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.