IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp164-170.html
   My bibliography  Save this article

Stand-alone renewable combined heat and power system with hydrogen technologies for household application

Author

Listed:
  • Lacko, R.
  • Drobnič, B.
  • Mori, M.
  • Sekavčnik, M.
  • Vidmar, M.

Abstract

A hybrid energy system, based on renewable energy sources and with hydrogen storage, can become an alternative for stand-alone electricity and heat supply. The objective of this work is to evaluate the feasibility of a completely renewable supply of power and heat for an isolated household, and a comparison to reference and alternative energy supply scenarios. In this paper, an energy system using fossil and renewable energy sources is compared to a system using only renewable energy sources (solar and wind) with hydrogen-based energy storage technologies. A reference household in Slovenia's coastal region was used for modelling and numerical simulation. Simulations and optimal energy system identification were conducted by considering the geographical location and availability of energy sources, load dynamics, and components' technical and economical characteristics. A household with electricity consumption of 11 kWh/day, hourly peak power demand of 3.8 kW and 660 L of oil-equivalent yearly heat demand was considered as the stand-alone load. The results show that 100% renewable electricity and heat supply of a reference household is technically feasible and is more cost-effective, compared to systems utilising fossil heat.

Suggested Citation

  • Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:164-170
    DOI: 10.1016/j.energy.2014.05.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    2. Beccali, M. & Brunone, S. & Cellura, M. & Franzitta, V., 2008. "Energy, economic and environmental analysis on RET-hydrogen systems in residential buildings," Renewable Energy, Elsevier, vol. 33(3), pages 366-382.
    3. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    4. Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M. & Shash, A., 2007. "Feasibility study of hybrid retrofits to an isolated off-grid diesel power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 635-653, May.
    5. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    6. Pedrazzi, Simone & Zini, Gabriele & Tartarini, Paolo, 2012. "Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage," Renewable Energy, Elsevier, vol. 46(C), pages 14-22.
    7. Wu, S.H. & Kotak, D.B. & Fleetwood, M.S., 2005. "An integrated system framework for fuel cell-based distributed green energy applications," Renewable Energy, Elsevier, vol. 30(10), pages 1525-1540.
    8. Himri, Y. & Boudghene Stambouli, A. & Draoui, B. & Himri, S., 2008. "Techno-economical study of hybrid power system for a remote village in Algeria," Energy, Elsevier, vol. 33(7), pages 1128-1136.
    9. Iqbal, M.T., 2004. "A feasibility study of a zero energy home in Newfoundland," Renewable Energy, Elsevier, vol. 29(2), pages 277-289.
    10. Jallouli, Rihab & Krichen, Lotfi, 2012. "Sizing, techno-economic and generation management analysis of a stand alone photovoltaic power unit including storage devices," Energy, Elsevier, vol. 40(1), pages 196-209.
    11. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    12. Khan, M.J. & Iqbal, M.T., 2005. "Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland," Renewable Energy, Elsevier, vol. 30(6), pages 835-854.
    13. Schenk, Niels J. & Moll, Henri C. & Potting, José & Benders, René M.J., 2007. "Wind energy, electricity, and hydrogen in the Netherlands," Energy, Elsevier, vol. 32(10), pages 1960-1971.
    14. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    15. Sovacool, Benjamin K. & Hirsh, Richard F., 2008. "Island wind-hydrogen energy: A significant potential US resource," Renewable Energy, Elsevier, vol. 33(8), pages 1928-1935.
    16. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Iftikhar & Muhammad Aamir & Asad Waqar & Naila & Fahad Bin Muslim & Imtiaz Alam, 2018. "Line-Interactive Transformerless Uninterruptible Power Supply (UPS) with a Fuel Cell as the Primary Source," Energies, MDPI, vol. 11(3), pages 1-19, March.
    2. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    3. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
    4. Assaf, Jihane & Shabani, Bahman, 2018. "Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications," Energy, Elsevier, vol. 157(C), pages 862-876.
    5. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    6. Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
    7. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
    8. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    9. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    10. Murugan, S. & Horák, Bohumil, 2016. "Tri and polygeneration systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1032-1051.
    11. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2017. "Generation and storage scheduling of combined heat and power," Energy, Elsevier, vol. 124(C), pages 693-705.
    12. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    13. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    14. Hesel, Philipp & Braun, Sebastian & Zimmermann, Florian & Fichtner, Wolf, 2022. "Integrated modelling of European electricity and hydrogen markets," Applied Energy, Elsevier, vol. 328(C).
    15. Shang, Ce & Ge, Yuyou & Zhai, Suwei & Huo, Chao & Li, Wenyun, 2023. "Combined heat and power storage planning," Energy, Elsevier, vol. 279(C).
    16. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    4. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    5. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    6. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    7. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    8. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    9. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    10. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Case study feasibility analysis of renewable energy supply options for small to medium-sized tourist accommodations," Renewable Energy, Elsevier, vol. 34(4), pages 1134-1144.
    11. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    12. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    13. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    14. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    15. Posso, F. & Contreras, A. & Veziroglu, A., 2009. "The use of hydrogen in the rural sector in Venezuela: Technical and financial study of the storage phase," Renewable Energy, Elsevier, vol. 34(5), pages 1234-1240.
    16. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    17. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    18. Han, Seulki & Kim, Jiyong, 2017. "An optimization model to design and analysis of renewable energy supply strategies for residential sector," Renewable Energy, Elsevier, vol. 112(C), pages 222-234.
    19. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    20. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:164-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.