IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v75y2014icp104-115.html
   My bibliography  Save this article

Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles

Author

Listed:
  • Chu, Wen-xiao
  • Ma, Ting
  • Zeng, Min
  • Qu, Ting
  • Wang, Liang-bi
  • Wang, Qiu-wang

Abstract

The multi-channels plate heat exchangers are recommended to be used in the high-efficiency power and propulsion systems. The present study analyzes the large fluid flow maldistribution occurring at the inlet manifold configurations of a high temperature heat exchanger with CFD (computational fluid dynamics) method. Four modified inlet manifolds are proposed, including inclined baffle, segmental baffle, helical baffle and improved helical baffle. It turns out that all the proposed designs have more or less improvement of uniform flow distribution among each channel. By comparing the flow nonuniformity, the Nusselt number and the friction factor, the inlet manifold with equidifferent helical baffles is the best, whose flow nonuniformity can be decreased by 52% averagely. Comparing with the baseline design, meanwhile, the optimal modified design which inducts the spiral fluid flow has effect on the comprehensive performance. The Nusselt number can be increased by 24% averagely due to the produced spiral fluid flow while the pressure drop is in an acceptable range. Furthermore, the corresponding correlation of Nu and f are obtained according to CFD results.

Suggested Citation

  • Chu, Wen-xiao & Ma, Ting & Zeng, Min & Qu, Ting & Wang, Liang-bi & Wang, Qiu-wang, 2014. "Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles," Energy, Elsevier, vol. 75(C), pages 104-115.
  • Handle: RePEc:eee:energy:v:75:y:2014:i:c:p:104-115
    DOI: 10.1016/j.energy.2014.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214005702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jang, Jiin-Yuh & Tsai, Ying-Chi & Wu, Chan-Wei, 2013. "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, Elsevier, vol. 53(C), pages 270-281.
    2. Campos-Celador, A. & Diarce, G. & González-Pino, I. & Sala, J.M., 2013. "Development and comparative analysis of the modeling of an innovative finned-plate latent heat thermal energy storage system," Energy, Elsevier, vol. 58(C), pages 438-447.
    3. Monteiro, Deiglys Borges & de Mello, Paulo Eduardo Batista, 2012. "Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations," Energy, Elsevier, vol. 45(1), pages 489-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalal Faraj & Khaled Chahine & Mostafa Mortada & Thierry Lemenand & Haitham S. Ramadan & Mahmoud Khaled, 2022. "Eco-Efficient Vehicle Cooling Modules with Integrated Diffusers—Thermal, Energy, and Environmental Analyses," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
    3. Maakala, Viljami & Järvinen, Mika & Vuorinen, Ville, 2018. "Optimizing the heat transfer performance of the recovery boiler superheaters using simulated annealing, surrogate modeling, and computational fluid dynamics," Energy, Elsevier, vol. 160(C), pages 361-377.
    4. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    5. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    6. Sui, Zengguang & Wu, Wei, 2023. "AI-assisted maldistribution minimization of membrane-based heat/mass exchangers for compact absorption cooling," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    2. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    3. Kashyap, Sarvesh & Sarkar, Jahar & Kumar, Amitesh, 2021. "Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids," Energy, Elsevier, vol. 225(C).
    4. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    5. Chen, Min & Gao, Xin, 2014. "Theoretical, experimental and numerical diagnose of critical power point of thermoelectric generators," Energy, Elsevier, vol. 78(C), pages 364-372.
    6. Li, Peisheng & Li, Zhihao & Zhang, Ying & Li, Wenbin & Chen, Yue & Lei, Jie, 2020. "Numerical research on performance comparison of multi-layer high temperature latent heat storage under different structure parameter," Renewable Energy, Elsevier, vol. 156(C), pages 131-141.
    7. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    8. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    9. Villanueva, Helio Henrique Santomo & de Mello, Paulo Eduardo Batista, 2015. "Heat transfer and pressure drop correlations for finned plate ceramic heat exchangers," Energy, Elsevier, vol. 88(C), pages 118-125.
    10. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    11. Favarel, Camille & Bédécarrats, Jean-Pierre & Kousksou, Tarik & Champier, Daniel, 2014. "Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power," Energy, Elsevier, vol. 68(C), pages 104-116.
    12. Wenwen Ye & Dourna Jamshideasli & Jay M. Khodadadi, 2023. "Improved Performance of Latent Heat Energy Storage Systems in Response to Utilization of High Thermal Conductivity Fins," Energies, MDPI, vol. 16(3), pages 1-83, January.
    13. de Mello, Paulo Eduardo Batista & Villanueva, Helio Henrique Santomo & Scuotto, Sérgio & Donato, Gustavo Henrique Bolognesi & Ortega, Fernando dos Santos, 2017. "Heat transfer, pressure drop and structural analysis of a finned plate ceramic heat exchanger," Energy, Elsevier, vol. 120(C), pages 597-607.
    14. Nagarajan, Vijaisri & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2014. "Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 589-602.
    15. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    16. Prieto, M.M. & González, B., 2016. "Fluid flow and heat transfer in PCM panels arranged vertically and horizontally for application in heating systems," Renewable Energy, Elsevier, vol. 97(C), pages 331-343.
    17. Meng, Fankai & Chen, Lingen & Sun, Fengrui & Yang, Bo, 2014. "Thermoelectric power generation driven by blast furnace slag flushing water," Energy, Elsevier, vol. 66(C), pages 965-972.
    18. Riahi, Soheila & Saman, Wasim Y. & Bruno, Frank & Belusko, Martin & Tay, N.H.S., 2018. "Performance comparison of latent heat storage systems comprising plate fins with different shell and tube configurations," Applied Energy, Elsevier, vol. 212(C), pages 1095-1106.
    19. Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
    20. Uddin, Md. Jashim & Bég, O. Anwar & Uddin, Md. Nazir, 2016. "Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions," Energy, Elsevier, vol. 115(P1), pages 1119-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:75:y:2014:i:c:p:104-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.