IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp680-690.html
   My bibliography  Save this article

Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm

Author

Listed:
  • Khorasaninejad, Ehsan
  • Hajabdollahi, Hassan

Abstract

In this paper, a solar assisted heat pump is modelled and optimized. Solar panel surface areas, evaporator pressure, condenser pressure, capacity of heat storage tank as well as the value of superheating/subcooling in evaporator/condenser are selected as design parameters. MOPSO (Multi-objective Particle Swarm Optimization) algorithm is used to find the optimum value of design parameters where TAC (total annual cost) and COP (coefficient of performance) taken as two objective functions. TAC is included with sum of investment, operation and environmental costs. The optimization is separately performed for five working fluids including R123, R134a, R245fa, R407C and R22. The optimization results showed that the best studied working fluid is R245fa in both thermo-economical and environmental view point with 1746.1 $/year as TAC, 3.76 for COP and annual environmental cost of 81.825. The optimum results of R245fa as working fluid, showed 15.22%, 21.28%, 22.31% and 44.66% improvement in TAC compared with R134a, R123, R22 and R407C, respectively. Furthermore, COP improvement for R245fa was obtained 26.77%, 30.92%, 34.31% and 48.12% compared with R134a, R123, R22 and R407C, respectively.

Suggested Citation

  • Khorasaninejad, Ehsan & Hajabdollahi, Hassan, 2014. "Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm," Energy, Elsevier, vol. 72(C), pages 680-690.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:680-690
    DOI: 10.1016/j.energy.2014.05.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    2. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    3. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    4. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2009. "Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks," Applied Energy, Elsevier, vol. 86(9), pages 1442-1449, September.
    5. Keliang, Liu & Jie, Ji & Tin-tai, Chow & Gang, Pei & Hanfeng, He & Aiguo, Jiang & Jichun, Yang, 2009. "Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor – A case study in Tibet," Renewable Energy, Elsevier, vol. 34(12), pages 2680-2687.
    6. Chow, T.T. & Bai, Y. & Fong, K.F. & Lin, Z., 2012. "Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating," Applied Energy, Elsevier, vol. 100(C), pages 309-317.
    7. Kong, X.Q. & Zhang, D. & Li, Y. & Yang, Q.M., 2011. "Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 36(12), pages 6830-6838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajabdollahi, Hassan & Ganjehkaviri, Abdolsaeid & Mohd Jaafar, Mohammad Nazri, 2015. "Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis," Energy, Elsevier, vol. 87(C), pages 369-380.
    2. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
    3. Li, Kun & Ding, Yi-Zhe & Ai, Chen & Sun, Hongwei & Xu, Yi-Peng & Nedaei, Navid, 2022. "Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production," Energy, Elsevier, vol. 245(C).
    4. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2015. "Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid," Energy, Elsevier, vol. 91(C), pages 685-699.
    5. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    6. Rey, Anthony & Zmeureanu, Radu, 2018. "Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems," Energy, Elsevier, vol. 145(C), pages 182-194.
    7. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    8. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    9. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal, 2018. "Mathematical Thermal Modelling of a Direct-Expansion Solar-Assisted Heat Pump Using Multi-Objective Optimization Based on the Energy Demand," Energies, MDPI, vol. 11(7), pages 1-27, July.
    10. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    12. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    13. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    14. Zhang, Ying & Deng, Shuai & Zhao, Li & Lin, Shan & Ni, Jiaxin & Ma, Minglu & Xu, Weicong, 2018. "Optimization and multi-time scale modeling of pilot solar driven polygeneration system based on organic Rankine cycle," Applied Energy, Elsevier, vol. 222(C), pages 396-409.
    15. Myeong Jin Ko, 2015. "Multi-Objective Optimization Design for Indirect Forced-Circulation Solar Water Heating System Using NSGA-II," Energies, MDPI, vol. 8(11), pages 1-25, November.
    16. Ding, Yan & Wang, Qiaochu & Kong, Xiangfei & Yang, Kun, 2019. "Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios," Applied Energy, Elsevier, vol. 250(C), pages 1600-1617.
    17. Mohammad Shafiey Dehaj & Hassan Hajabdollahi, 2021. "Multi-objective optimization of hybrid solar/wind/diesel/battery system for different climates of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10910-10936, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    3. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    4. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    5. Hao, Wengang & Zhang, Han & Liu, Shuonan & Mi, Baoqi & Lai, Yanhua, 2021. "Mathematical modeling and performance analysis of direct expansion heat pump assisted solar drying system," Renewable Energy, Elsevier, vol. 165(P1), pages 77-87.
    6. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2023. "An Installed Hybrid Direct Expansion Solar Assisted Heat Pump Water Heater to Monitor and Modeled the Energy Factor of a University Students’ Accommodation," Energies, MDPI, vol. 16(3), pages 1-30, January.
    7. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    8. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
    9. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    10. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    11. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Calise, Francesco & Dentice d'Accadia, Massimo & Figaj, Rafal Damian & Vanoli, Laura, 2016. "A novel solar-assisted heat pump driven by photovoltaic/thermal collectors: Dynamic simulation and thermoeconomic optimization," Energy, Elsevier, vol. 95(C), pages 346-366.
    13. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    14. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    15. Yu Jin Nam & Xin Yang Gao & Sung Hoon Yoon & Kwang Ho Lee, 2015. "Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage," Energies, MDPI, vol. 8(12), pages 1-17, November.
    16. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.
    17. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    18. Moreno-Rodriguez, A. & Garcia-Hernando, N. & González-Gil, A. & Izquierdo, M., 2013. "Experimental validation of a theoretical model for a direct-expansion solar-assisted heat pump applied to heating," Energy, Elsevier, vol. 60(C), pages 242-253.
    19. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    20. Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:680-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.