IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp29-46.html
   My bibliography  Save this article

A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges

Author

Listed:
  • Wakui, Tetsuya
  • Kinoshita, Takahiro
  • Yokoyama, Ryohei

Abstract

The feasibility on a residential energy supply network using multiple cogeneration systems, known as combined heat and powers, is investigated by an optimization approach. The target residential energy supply network is based on a microgrid of residential cogeneration systems without electric power export, and featured by power and heat interchanges among cogeneration systems and hot water supply network where produced hot water is supplied to multiple residence units through networked pipes. First, an optimal operational planning model is developed on the basis of mixed-integer linear programming, where energy loss characteristics of connecting pipes between storage tanks are originally modeled by considering the influence of hot water retention. Second, a hot water demand calculation model considering energy loss from networked pipes is developed to reduce the solution space of the optimization problem. The developed models are then applied to a residential energy supply network for a housing complex composed of multiple 1-kWe gas engine-based cogeneration systems and 20 residence units. The results show that the energy-saving effect of the residential energy supply network is dominated by the power interchange and decreases with an increase in the number of residence units involved in the hot water supply network.

Suggested Citation

  • Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:29-46
    DOI: 10.1016/j.energy.2014.01.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214001327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yildirim, Nurdan & Toksoy, Macit & Gokcen, Gulden, 2010. "Piping network design of geothermal district heating systems: Case study for a university campus," Energy, Elsevier, vol. 35(8), pages 3256-3262.
    2. Shi, Bin & Yan, Lie-Xiang & Wu, Wei, 2013. "Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction," Energy, Elsevier, vol. 56(C), pages 135-143.
    3. Wakui, Tetsuya & Yokoyama, Ryohei & Shimizu, Ken-ichi, 2010. "Suitable operational strategy for power interchange operation using multiple residential SOFC (solid oxide fuel cell) cogeneration systems," Energy, Elsevier, vol. 35(2), pages 740-750.
    4. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    5. Wakui, Tetsuya & Yokoyama, Ryohei, 2011. "Optimal sizing of residential gas engine cogeneration system for power interchange operation from energy-saving viewpoint," Energy, Elsevier, vol. 36(6), pages 3816-3824.
    6. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    7. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    8. Yokoyama, Ryohei & Wakui, Tetsuya & Kamakari, Junya & Takemura, Kazuhisa, 2010. "Performance analysis of a CO2 heat pump water heating system under a daily change in a standardized demand," Energy, Elsevier, vol. 35(2), pages 718-728.
    9. Weber, C. & Shah, N., 2011. "Optimisation based design of a district energy system for an eco-town in the United Kingdom," Energy, Elsevier, vol. 36(2), pages 1292-1308.
    10. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    11. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    12. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    13. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    14. Basu, Ashoke Kumar & Chowdhury, S.P. & Chowdhury, S. & Paul, S., 2011. "Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4348-4356.
    15. Kim, Janghyun & Cho, Woojin & Lee, Kwan-Soo, 2010. "Optimum generation capacities of micro combined heat and power systems in apartment complexes with varying numbers of apartment units," Energy, Elsevier, vol. 35(12), pages 5121-5131.
    16. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    17. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    18. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    19. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
    20. Wakui, Tetsuya & Yokoyama, Ryohei & Tamura, Itaru & Kegasa, Akeshi, 2009. "Effect of power interchange operation of multiple household gas engine cogeneration systems on energy-saving," Energy, Elsevier, vol. 34(12), pages 2092-2100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
    2. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
    3. Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2017. "Development of an optimization based design framework for microgrid energy systems," Energy, Elsevier, vol. 140(P1), pages 340-351.
    4. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    5. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2018. "Predictive management of cogeneration-based energy supply networks using two-stage multi-objective optimization," Energy, Elsevier, vol. 162(C), pages 1269-1286.
    6. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    7. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    8. Ferrari, M.L. & Cuneo, A. & Pascenti, M. & Traverso, A., 2017. "Real-time state of charge estimation in thermal storage vessels applied to a smart polygeneration grid," Applied Energy, Elsevier, vol. 206(C), pages 90-100.
    9. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    10. Wakui, Tetsuya & Sawada, Kento & Yokoyama, Ryohei & Aki, Hirohisa, 2019. "Predictive management for energy supply networks using photovoltaics, heat pumps, and battery by two-stage stochastic programming and rule-based control," Energy, Elsevier, vol. 179(C), pages 1302-1319.
    11. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
    13. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    14. Shirazi, Elham & Jadid, Shahram, 2017. "Cost reduction and peak shaving through domestic load shifting and DERs," Energy, Elsevier, vol. 124(C), pages 146-159.
    15. Kate Doubleday & Faeza Hafiz & Andrew Parker & Tarek Elgindy & Anthony Florita & Gregor Henze & Graziano Salvalai & Shanti Pless & Bri‐Mathias Hodge, 2019. "Integrated distribution system and urban district planning with high renewable penetrations," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    16. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
    17. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    18. Stojiljković, Mirko M. & Ignjatović, Marko G. & Vučković, Goran D., 2015. "Greenhouse gases emission assessment in residential sector through buildings simulations and operation optimization," Energy, Elsevier, vol. 92(P3), pages 420-434.
    19. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    20. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
    21. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    22. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    23. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    24. Andrea Bonfiglio & Massimo Brignone & Federico Delfino & Alessandro Nilberto & Renato Procopio, 2016. "Definition and Experimental Validation of a Simplified Model for a Microgrid Thermal Network and its Integration into Energy Management Systems," Energies, MDPI, vol. 9(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    2. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    3. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    4. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Optimal structural design of residential cogeneration systems with battery based on improved solution method for mixed-integer linear programming," Energy, Elsevier, vol. 84(C), pages 106-120.
    5. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    6. Wakui, Tetsuya & Yokoyama, Ryohei, 2015. "Impact analysis of sampling time interval and battery installation on optimal operational planning of residential cogeneration systems without electric power export," Energy, Elsevier, vol. 81(C), pages 120-136.
    7. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    9. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
    10. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei & Aki, Hirohisa, 2016. "Operation management of residential energy-supplying networks based on optimization approaches," Applied Energy, Elsevier, vol. 183(C), pages 340-357.
    12. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    13. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    14. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    15. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    16. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    17. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    18. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    19. Rieder, Andreas & Christidis, Andreas & Tsatsaronis, George, 2014. "Multi criteria dynamic design optimization of a small scale distributed energy system," Energy, Elsevier, vol. 74(C), pages 230-239.
    20. Voll, Philip & Jennings, Mark & Hennen, Maike & Shah, Nilay & Bardow, André, 2015. "The optimum is not enough: A near-optimal solution paradigm for energy systems synthesis," Energy, Elsevier, vol. 82(C), pages 446-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:29-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.