IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v59y2013icp666-675.html
   My bibliography  Save this article

Nonuniform heat transfer model and performance of parabolic trough solar receiver

Author

Listed:
  • Lu, Jianfeng
  • Ding, Jing
  • Yang, Jianping
  • Yang, Xiaoxi

Abstract

The nonuniform heat transfer model and performance of parabolic trough solar receiver are theoretically investigated due to the energy balances between the heat transfer fluid, absorber tube, glass envelope and surroundings. The absorber tube and glass envelope are both divided into two regions for uneven solar radiation and wall temperature distribution, and then a nonuniform heat transfer model of solar receiver is established. According to the calculation results, the heat loss of solar receiver from the nonuniform model is a little higher than that from the uniform model, and the heat transfer inside the vacuum glass envelope is mainly dependent upon the radiation, while the convection and radiation both play important roles in the heat loss outside the glass envelope. Under offsun condition, the heat transfer of receiver is almost uniform with little differences of wall temperature and heat loss. Under onsun condition, the heat transfer of receiver is apparently nonuniform for higher wall temperature and heat loss in the positive region of glass envelope and absorber tube. As a conclusion, the heat transfer performances of parabolic trough solar receiver are better to be calculated by nonuniform model especially under onsun condition.

Suggested Citation

  • Lu, Jianfeng & Ding, Jing & Yang, Jianping & Yang, Xiaoxi, 2013. "Nonuniform heat transfer model and performance of parabolic trough solar receiver," Energy, Elsevier, vol. 59(C), pages 666-675.
  • Handle: RePEc:eee:energy:v:59:y:2013:i:c:p:666-675
    DOI: 10.1016/j.energy.2013.07.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213006580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.07.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Sulaiman, Fahad A., 2013. "Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles," Energy, Elsevier, vol. 58(C), pages 561-570.
    2. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    3. Padilla, Ricardo Vasquez & Demirkaya, Gokmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2011. "Heat transfer analysis of parabolic trough solar receiver," Applied Energy, Elsevier, vol. 88(12), pages 5097-5110.
    4. Dersch, Jürgen & Geyer, Michael & Herrmann, Ulf & Jones, Scott A. & Kelly, Bruce & Kistner, Rainer & Ortmanns, Winfried & Pitz-Paal, Robert & Price, Henry, 2004. "Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems," Energy, Elsevier, vol. 29(5), pages 947-959.
    5. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    6. Naeeni, N. & Yaghoubi, M., 2007. "Analysis of wind flow around a parabolic collector (2) heat transfer from receiver tube," Renewable Energy, Elsevier, vol. 32(8), pages 1259-1272.
    7. Trieb, F. & Nitsch, J., 1998. "Recommendations for the market introduction of solar thermal power stations," Renewable Energy, Elsevier, vol. 14(1), pages 17-22.
    8. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    2. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    3. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    4. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    5. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    6. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    7. Heng, Shye Yunn & Asako, Yutaka & Suwa, Tohru & Nagasaka, Ken, 2019. "Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network," Renewable Energy, Elsevier, vol. 131(C), pages 168-179.
    8. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Li, Zeng-Yao & Huang, Zhen & Tao, Wen-Quan, 2016. "Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube," Energy, Elsevier, vol. 113(C), pages 1288-1303.
    10. Song, Xingwang & Dong, Guobo & Gao, Fangyuan & Diao, Xungang & Zheng, Liqing & Zhou, Fuyun, 2014. "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts," Energy, Elsevier, vol. 77(C), pages 771-782.
    11. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    12. Wang, Qiliang & Li, Jing & Yang, Honglun & Su, Katy & Hu, Mingke & Pei, Gang, 2017. "Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield," Energy, Elsevier, vol. 139(C), pages 447-458.
    13. Aichouba, Asma & Merzouk, Mustapha & Valenzuela, Loreto & Zarza, Eduardo & Kasbadji-Merzouk, Nachida, 2018. "Influence of the displacement of solar receiver tubes on the performance of a parabolic-trough collector," Energy, Elsevier, vol. 159(C), pages 472-481.
    14. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    15. Liang, Hongbo & You, Shijun & Zhang, Huan, 2016. "Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors," Energy, Elsevier, vol. 96(C), pages 37-47.
    16. Gaylord Carrillo Caballero & Yulineth Cardenas Escorcia & Luis Sebastián Mendoza Castellanos & Ana Lisbeth Galindo Noguera & Osvaldo José Venturini & Electo Eduardo Silva Lora & Elkin I. Gutiérrez Vel, 2022. "Thermal Analysis of a Parabolic Trough Collectors System Coupled to an Organic Rankine Cycle and a Two-Tank Thermal Storage System: Case Study of Itajubá-MG Brazil," Energies, MDPI, vol. 15(21), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    3. Cheng, Ze-Dong & He, Ya-Ling & Qiu, Yu, 2015. "A detailed nonuniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends," Renewable Energy, Elsevier, vol. 74(C), pages 139-147.
    4. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    5. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    6. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    7. Song, Xingwang & Dong, Guobo & Gao, Fangyuan & Diao, Xungang & Zheng, Liqing & Zhou, Fuyun, 2014. "A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts," Energy, Elsevier, vol. 77(C), pages 771-782.
    8. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    9. Cheng, Ze-Dong & Zhao, Xue-Ru & He, Ya-Ling, 2018. "Novel optical efficiency formulas for parabolic trough solar collectors: Computing method and applications," Applied Energy, Elsevier, vol. 224(C), pages 682-697.
    10. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    11. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    12. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    13. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    15. Silva, R. & Pérez, M. & Fernández-Garcia, A., 2013. "Modeling and co-simulation of a parabolic trough solar plant for industrial process heat," Applied Energy, Elsevier, vol. 106(C), pages 287-300.
    16. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
    17. Kaloudis, E. & Papanicolaou, E. & Belessiotis, V., 2016. "Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model," Renewable Energy, Elsevier, vol. 97(C), pages 218-229.
    18. Hachicha, A.A. & Rodríguez, I. & Castro, J. & Oliva, A., 2013. "Numerical simulation of wind flow around a parabolic trough solar collector," Applied Energy, Elsevier, vol. 107(C), pages 426-437.
    19. Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
    20. Jin, Jian & Ling, Yunyi & Hao, Yong, 2017. "Similarity analysis of parabolic-trough solar collectors," Applied Energy, Elsevier, vol. 204(C), pages 958-965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:59:y:2013:i:c:p:666-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.