IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v41y2012i1p203-211.html
   My bibliography  Save this article

CO2 fixation using magnesium silicate minerals. Part 2: Energy efficiency and integration with iron-and steelmaking

Author

Listed:
  • Romão, Inês
  • Nduagu, Experience
  • Fagerlund, Johan
  • Gando-Ferreira, Licínio M.
  • Zevenhoven, Ron

Abstract

Mineral carbonation presents itself as the most promising method to sequester CO2 in Finland. A staged process for CO2 mineralisation, using magnesium silicates, is being intensively developed at Åbo Akademi. A process energy analysis is made based on the most energy intensive steps, i.e. the heat treatment of the magnesium silicate rock and the carbonation reaction. Aspen Plus® software was used to model the process and pinch and exergy analyses were performed to acquire information on process layout for optimal heat recovery and integration. The simulations allow for concluding that the fixation of 1 kg of CO2 requires 3.04 MJ and 3.1 kg of serpentinite mineral rock. Additionally, the process gives considerable amounts of FeOOH and Ca(OH)2 as by-products making the integration of mineral carbonation with the steelmaking industry a very attractive opportunity to reduce CO2 emissions and raw materials inputs.

Suggested Citation

  • Romão, Inês & Nduagu, Experience & Fagerlund, Johan & Gando-Ferreira, Licínio M. & Zevenhoven, Ron, 2012. "CO2 fixation using magnesium silicate minerals. Part 2: Energy efficiency and integration with iron-and steelmaking," Energy, Elsevier, vol. 41(1), pages 203-211.
  • Handle: RePEc:eee:energy:v:41:y:2012:i:1:p:203-211
    DOI: 10.1016/j.energy.2011.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211005561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zevenhoven, Ron & Teir, Sebastian & Eloneva, Sanni, 2008. "Heat optimisation of a staged gas–solid mineral carbonation process for long-term CO2 storage," Energy, Elsevier, vol. 33(2), pages 362-370.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
    2. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    3. Nduagu, Experience & Romão, Inês & Fagerlund, Johan & Zevenhoven, Ron, 2013. "Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration," Applied Energy, Elsevier, vol. 106(C), pages 116-126.
    4. Slotte, Martin & Romão, Inês & Zevenhoven, Ron, 2013. "Integration of a pilot-scale serpentinite carbonation process with an industrial lime kiln," Energy, Elsevier, vol. 62(C), pages 142-149.
    5. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    6. Zevenhoven, Ron & Slotte, Martin & Åbacka, Jacob & Highfield, James, 2016. "A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step," Energy, Elsevier, vol. 117(P2), pages 604-611.
    7. Sangwon Park & Yeon-Sik Bong & Chi Wan Jeon, 2020. "Characteristics of Carbonate Formation from Concentrated Seawater Using CO 2 Chemical Absorption Methodology," IJERPH, MDPI, vol. 18(1), pages 1-14, December.
    8. Starr, Katherine & Ramirez, Andrea & Meerman, Hans & Villalba, Gara & Gabarrell, Xavier, 2015. "Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain," Energy, Elsevier, vol. 79(C), pages 298-309.
    9. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fagerlund, Johan & Nduagu, Experience & Romão, Inês & Zevenhoven, Ron, 2012. "CO2 fixation using magnesium silicate minerals part 1: Process description and performance," Energy, Elsevier, vol. 41(1), pages 184-191.
    2. Lin, Q.G. & Huang, G.H., 2010. "An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level," Energy, Elsevier, vol. 35(5), pages 2270-2280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:41:y:2012:i:1:p:203-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.