IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v40y2012i1p348-357.html
   My bibliography  Save this article

Wind resource estimation and wind park design in El-Kef region, Tunisia

Author

Listed:
  • Abbes, Mohamed
  • Belhadj, Jamel

Abstract

The aim of this study is to investigate the prospects of wind energy development in the El-Kef governorate, a north-western region of Tunisia. This work falls within the framework of a 15 MW wind farm project, undertaken by the local cement factory in order to cover a part of its energy needs. The collected data were analyzed and processed using the Weibull statistical method. The results of these analyses are used to estimate the wind power potential in the region and select the best fitted wind turbines to the site characteristics. Then, a wind farm micro-siting is proposed using the Windstation and 3DEM softwares. Finally, annual energy production of the wind farm was calculated and the project economic feasibility was evaluated. The economic analysis is based on the life-cycle costing methodology and it aims to estimate wind projects viability and profitability in the region.

Suggested Citation

  • Abbes, Mohamed & Belhadj, Jamel, 2012. "Wind resource estimation and wind park design in El-Kef region, Tunisia," Energy, Elsevier, vol. 40(1), pages 348-357.
  • Handle: RePEc:eee:energy:v:40:y:2012:i:1:p:348-357
    DOI: 10.1016/j.energy.2012.01.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200076X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.01.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arslan, Oguz, 2010. "Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey," Energy, Elsevier, vol. 35(1), pages 120-131.
    2. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    3. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    4. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
    5. Soler-Bientz, Rolando, 2011. "Preliminary results from a network of stations for wind resource assessment at North of Yucatan Peninsula," Energy, Elsevier, vol. 36(1), pages 538-548.
    6. Kelleher, J. & Ringwood, J.V., 2009. "A computational tool for evaluating the economics of solar and wind microgeneration of electricity," Energy, Elsevier, vol. 34(4), pages 401-409.
    7. EL-Shimy, M., 2010. "Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt," Renewable Energy, Elsevier, vol. 35(8), pages 1870-1878.
    8. Elamouri, M. & Ben Amar, F., 2008. "Wind energy potential in Tunisia," Renewable Energy, Elsevier, vol. 33(4), pages 758-768.
    9. AfDB AfDB, . "AfDB Group Annual Report 2008," Annual Report, African Development Bank, number 64 edited by Koua Louis Kouakou.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    2. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    3. Watts, David & Oses, Nicolás & Pérez, Rodrigo, 2016. "Assessment of wind energy potential in Chile: A project-based regional wind supply function approach," Renewable Energy, Elsevier, vol. 96(PA), pages 738-755.
    4. Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
    5. Mohammadi, Kasra & Mostafaeipour, Ali & Sabzpooshani, Majid, 2014. "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran," Energy, Elsevier, vol. 67(C), pages 117-128.
    6. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    7. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    8. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    9. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    10. Song, M.X. & Chen, K. & He, Z.Y. & Zhang, X., 2014. "Optimization of wind farm micro-siting for complex terrain using greedy algorithm," Energy, Elsevier, vol. 67(C), pages 454-459.
    11. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    12. Woolmington, T. & Sunderland, K. & Blackledge, J. & Conlon, M., 2014. "The progressive development of turbulence statistics and its impact on wind power predictability," Energy, Elsevier, vol. 77(C), pages 25-34.
    13. Dinler, Ali, 2013. "A new low-correlation MCP (measure-correlate-predict) method for wind energy forecasting," Energy, Elsevier, vol. 63(C), pages 152-160.
    14. Masseran, Nurulkamal, 2015. "Evaluating wind power density models and their statistical properties," Energy, Elsevier, vol. 84(C), pages 533-541.
    15. Li, Chong & Liu, Youying & Li, Gang & Li, Jianyan & Zhu, Dasheng & Jia, Wenhua & Li, Guo & Zhi, Youran & Zhai, Xinyu, 2016. "Evaluation of wind energy resource and wind turbine characteristics at two locations in China," Technology in Society, Elsevier, vol. 47(C), pages 121-128.
    16. Lagaros, Nikos D. & Karlaftis, Matthew G. & Paida, Maria K., 2015. "Stochastic life-cycle cost analysis of wind parks," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 117-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    2. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    3. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    4. Mohammadi, Kasra & Mostafaeipour, Ali & Sabzpooshani, Majid, 2014. "Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran," Energy, Elsevier, vol. 67(C), pages 117-128.
    5. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    6. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    7. Akpınar, Adem, 2013. "Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey," Energy, Elsevier, vol. 50(C), pages 395-405.
    8. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    9. Hua, Jian & Shiu, Hong-Gwo, 2018. "Sustainable development of renewable energy on Wangan Island, Taiwan," Utilities Policy, Elsevier, vol. 55(C), pages 200-208.
    10. Redha, Adel Mohammed & Dincer, Ibrahim & Gadalla, Mohamed, 2011. "Thermodynamic performance assessment of wind energy systems: An application," Energy, Elsevier, vol. 36(7), pages 4002-4010.
    11. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    12. Diaf, S. & Notton, G., 2013. "Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 379-390.
    13. Janajreh, Isam & Su, Liu & Alan, Fathi, 2013. "Wind energy assessment: Masdar City case study," Renewable Energy, Elsevier, vol. 52(C), pages 8-15.
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    16. Kwami Senam A. Sedzro & Adekunlé Akim Salami & Pierre Akuété Agbessi & Mawugno Koffi Kodjo, 2022. "Comparative Study of Wind Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa)," Energies, MDPI, vol. 15(22), pages 1-28, November.
    17. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    18. Dincer, Furkan, 2011. "The analysis on wind energy electricity generation status, potential and policies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5135-5142.
    19. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    20. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:40:y:2012:i:1:p:348-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.