IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i3p1590-1598.html
   My bibliography  Save this article

CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

Author

Listed:
  • Li, Yingjie
  • Zhao, Changsui
  • Chen, Huichao
  • Ren, Qiangqiang
  • Duan, Lunbo

Abstract

This paper examines the average carbonation conversion, CO2 capture efficiency and energy requirement for post-combustion CO2 capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO2 capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO2 capture efficiency. Achieving 0.95 of CO2 capture efficiency without sulfation, 272kJ/mol CO2 is required in the calciner for the natural limestone, whereas only 223kJ/mol CO2 for the modified sorbent. The modified limestone possesses greater advantages in CO2 capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO2 from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

Suggested Citation

  • Li, Yingjie & Zhao, Changsui & Chen, Huichao & Ren, Qiangqiang & Duan, Lunbo, 2011. "CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle," Energy, Elsevier, vol. 36(3), pages 1590-1598.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1590-1598
    DOI: 10.1016/j.energy.2010.12.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210007784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.12.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barelli, L. & Bidini, G. & Corradetti, A. & Desideri, U., 2007. "Production of hydrogen through the carbonation–calcination reaction applied to CH4/CO2 mixtures," Energy, Elsevier, vol. 32(5), pages 834-843.
    2. Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
    3. Naqvi, Rehan & Wolf, Jens & Bolland, Olav, 2007. "Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture," Energy, Elsevier, vol. 32(4), pages 360-370.
    4. Garg, Amit & Shukla, P.R., 2009. "Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)," Energy, Elsevier, vol. 34(8), pages 1032-1041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puthiya Veetil, Sanoop Kumar & Rebane, Kaarel & Yörük, Can Rüstü & Lopp, Margus & Trikkel, Andres & Hitch, Michael, 2021. "Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent," Energy, Elsevier, vol. 221(C).
    2. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Dou, Binlin & Wang, Chao & Song, Yongchen & Chen, Haisheng & Jiang, Bo & Yang, Mingjun & Xu, Yujie, 2016. "Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 536-546.
    4. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    5. Xiaotong Ma & Yingjie Li & Yi Qian & Zeyan Wang, 2019. "A Carbide Slag-Based, Ca 12 Al 14 O 33 -Stabilized Sorbent Prepared by the Hydrothermal Template Method Enabling Efficient CO 2 Capture," Energies, MDPI, vol. 12(13), pages 1-17, July.
    6. Yan, Linbo & Yue, Guangxi & He, Boshu, 2015. "Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system," Energy, Elsevier, vol. 93(P2), pages 1778-1787.
    7. Khosravi, Soheil & Hossainpour, Siamak & Farajollahi, Hossein & Abolzadeh, Nemat, 2022. "Integration of a coal fired power plant with calcium looping CO2 capture and concentrated solar power generation: Energy, exergy and economic analysis," Energy, Elsevier, vol. 240(C).
    8. Matthews, L. & Lipiński, W., 2012. "Thermodynamic analysis of solar thermochemical CO2 capture via carbonation/calcination cycle with heat recovery," Energy, Elsevier, vol. 45(1), pages 900-907.
    9. Niu, Shengli & Zhou, Yan & Li, Hui & Lu, Chunmei & Liu, Li, 2015. "An investigation on the catalytic capability of the modified white mud after activation in transesterification and kinetic calculation," Energy, Elsevier, vol. 89(C), pages 982-989.
    10. Lara, Y. & Martínez, A. & Lisbona, P. & Romeo, L.M., 2016. "Heat integration of alternative Ca-looping configurations for CO2 capture," Energy, Elsevier, vol. 116(P1), pages 956-962.
    11. Ju, Youngsan & Lee, Chang-Ha, 2019. "Dynamic modeling of a dual fluidized-bed system with the circulation of dry sorbent for CO2 capture," Applied Energy, Elsevier, vol. 241(C), pages 640-651.
    12. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    13. Ma, Xiaotong & Li, Yingjie & Duan, Lunbo & Anthony, Edward & Liu, Hantao, 2018. "CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions," Applied Energy, Elsevier, vol. 225(C), pages 402-412.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    2. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    3. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    4. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    5. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Lahiri-Dutt, Kuntala, 2016. "The diverse worlds of coal in India: Energising the nation, energising livelihoods," Energy Policy, Elsevier, vol. 99(C), pages 203-213.
    7. Fernández, J.R. & Abanades, J.C., 2014. "Conceptual design of a Ni-based chemical looping combustion process using fixed-beds," Applied Energy, Elsevier, vol. 135(C), pages 309-319.
    8. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    9. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Kalimuthu, Selvam & Karmakar, Sujit & Kolar, Ajit Kumar, 2017. "3-E analysis of a Pressurized Pulverized Combined Cycle (PPCC) power plant using high ash Indian coal," Energy, Elsevier, vol. 128(C), pages 634-648.
    11. Barelli, L. & Bidini, G. & Gallorini, F., 2015. "SE-SR with sorbents based on calcium aluminates: Process optimization," Applied Energy, Elsevier, vol. 143(C), pages 110-118.
    12. Bhavsar, Saurabh & Isenberg, Natalie & More, Amey & Veser, Götz, 2016. "Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 168(C), pages 236-247.
    13. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    14. Cloete, Schalk & Zaabout, Abdelghafour & Romano, Matteo C. & Chiesa, Paolo & Lozza, Giovanni & Gallucci, Fausto & van Sint Annaland, Martin & Amini, Shahriar, 2017. "Optimization of a Gas Switching Combustion process through advanced heat management strategies," Applied Energy, Elsevier, vol. 185(P2), pages 1459-1470.
    15. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    16. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    17. Xu, T.X. & Tian, X.K. & Khosa, A.A. & Yan, J. & Ye, Q. & Zhao, C.Y., 2021. "Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor," Energy, Elsevier, vol. 236(C).
    18. Erlach, B. & Schmidt, M. & Tsatsaronis, G., 2011. "Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion," Energy, Elsevier, vol. 36(6), pages 3804-3815.
    19. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    20. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1590-1598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.