IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i2p858-863.html
   My bibliography  Save this article

Economic analysis of coal-based polygeneration system for methanol and power production

Author

Listed:
  • Lin, Hu
  • Jin, Hongguang
  • Gao, Lin
  • Han, Wei

Abstract

Polygeneration system for chemical and power co-production has been regarded as one of promising technologies to use fossil fuel more efficiently and cleanly. In this paper the thermodynamic and economic performances of three types of coal-based polygeneration system were investigated and the influence of energy saving of oxygenation systems on system economic performance was revealed. The primary cost saving ratio (PCS) is presented as a criterion, which represents the cost saving of polygeneration system compared with the single-product systems with the same products outputs, to evaluate economic advantages of polygeneration system. As a result, the system, adopting un-reacted syngas partly recycled to the methanol synthesis reactor and without the shift process, can get the optimal PCS of 11.8%, which results from the trade-off between the installed capital cost saving and the energy saving effects on the cost saving, and represents the optimal coupling relationship among chemical conversion, energy utilization and economic performance. And both of fuel price and the level of equipment capital cost affect on PCS faintly. This paper provides an evaluation method for polygeneration systems based on both technical and economic viewpoints.

Suggested Citation

  • Lin, Hu & Jin, Hongguang & Gao, Lin & Han, Wei, 2010. "Economic analysis of coal-based polygeneration system for methanol and power production," Energy, Elsevier, vol. 35(2), pages 858-863.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:2:p:858-863
    DOI: 10.1016/j.energy.2009.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jianyun & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity," Energy, Elsevier, vol. 75(C), pages 136-145.
    2. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2014. "Small-medium scale polygeneration systems: Methanol and power production," Applied Energy, Elsevier, vol. 113(C), pages 1109-1117.
    3. Pellegrini, Laura A. & Soave, Giorgio & Gamba, Simone & Langè, Stefano, 2011. "Economic analysis of a combined energy–methanol production plant," Applied Energy, Elsevier, vol. 88(12), pages 4891-4897.
    4. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    5. Li, Yuanyuan & Zhang, Guoqiang & Yang, Yongping & Zhai, Dailong & Zhang, Kai & Xu, Gang, 2014. "Thermodynamic analysis of a coal-based polygeneration system with partial gasification," Energy, Elsevier, vol. 72(C), pages 201-214.
    6. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
    7. Zhang, Jianyun & Liu, Pei & Zhou, Zhe & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system," Applied Energy, Elsevier, vol. 114(C), pages 146-154.
    8. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
    9. Lin, Hu & Jin, Hongguang & Gao, Lin & Zhang, Na, 2014. "A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery," Energy, Elsevier, vol. 74(C), pages 174-180.
    10. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    11. Tiejiang Yuan & Qingxi Duan & Xiangping Chen & Xufeng Yuan & Wenping Cao & Juan Hu & Quanmin Zhu, 2017. "Coordinated Control of a Wind-Methanol-Fuel Cell System with Hydrogen Storage," Energies, MDPI, vol. 10(12), pages 1-21, December.
    12. Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.
    13. Kiso, F. & Matsuo, M., 2011. "A simulation study on the enhancement of the shift reaction by water injection into a gasifier," Energy, Elsevier, vol. 36(7), pages 4032-4040.
    14. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
    15. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "The consumption, production and transportation of methanol in China: A review," Energy Policy, Elsevier, vol. 63(C), pages 130-138.
    16. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:2:p:858-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.